
Introduction

Gene expression experiments are potentially use-
ful to identify subgroups of patients with good/bad
prognosis. The advantage of functional genomics
assessment is substantial when classical progno-
stic markers have limited value.
For example in the seminal article by Alizadeh et
al. [1] the molecular classification of tumors on
the basis of gene expression identified previously
undetected and clinically significant subtypes of
cancer. Many microarray studies focus on survi-
val time of patients as the primary clinical outcome.
The prediction of survival is the main issue of many
published papers. A review can be found in [27].
A popular approach to screen for genes candida-
tes as prognostic markers consists in first classi-
fying patients on the basis of gene expressions and
second in evaluating if and to which extent the

identified subgroups experience differential sur-
vival [10]. This approach, while widely used, is
inefficient because there could be differences in
genomic expressions identified at the first step that
do not relate to prognosis and viceversa. The al-
ternative practice,with censored life histories, of
comparing dead/alive subjects on the basis of gene
expression is incorrect.
A more efficient approach consists in directly re-
lating the gene expression profile to survival [10].
For this reason, among others, the Significance
Analysis of Microarrays (SAM) [26] has been ge-
neralized for working with censored survival
data (survival option in the samr function of R soft-
ware). These procedures are usually marginal: they
investigate the effect of gene expression without
taking into account other potential prognostic va-
riables (i.g. age, gender, stage of disease) and they
assess the effect of each gene separately.
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Summary
Microarray experiments have been used to investigate the relationship between gene expression and survival in cancer pa-
tients. Many methods have been developed, but most of them do not take into account other prognostic variables and the in-
terplay among genes. A solution consists in using penalized regression models for censored survival data. We propose a sin-
gle graphical approach to complement penalized regression analysis. In this paper, we illustrate the methodology using a pe-
nalized Cox regression approach on two different microarray data sets (colon and lung cancer). A small simulation study
completes the paper. On both data sets, we applied a L2 penalized Cox Regression, after having pre-selected the most rele-
vant sets of gene expression data according to a generalized logrank test. The patterns of estimated gene expression coeffi-
cients were explored varying the penalty parameter.
We compared these results with those obtained while using a L1 penalty and found that the two approaches gave consistent,
but not identical, results. The simulation study confirms the results for three different correlation scenarios.
Theoretical considerations indicate that the L2 penalized regression is a more appropriate approach in this context. We pro-
pose to consider the entire regularization pattern varying the penalty parameter as a graphical tool in a sensitivity analysis.



Estimating the net contribution of gene expression
in predicting survival, once patient and tumor cha-
racteristics are accounted for, is a scientifically
sound goal [12]. Moreover, since good/bad pro-
gnosis may result from the interplay between many
genes, methods that simultaneously use data from
many genes are expected to have better performance
in explaining risk than methods that investigate each
gene separately. In microarray experiments, the
number of genes is much larger than the number
of patients. Consequently,because of the singula-
rity of the design matrix, including a large num-
ber of genes in the same model is a major problem.
A solution for this problem is to use methods ba-
sed on penalized regression [24]. With penalized
regression, the conditional effect of each single gene
expression, given the rest of the genomic infor-
mation, can be evaluated by the introduction of a
constraint on gene expression coefficients.
The constraint is defined in order to reduce the ef-
fective number of parameters included in the mo-
del (see for example [14]).
Several constraint definitions can be used. Ridge
regression and Lasso regression are examples of
penalized regressions that shrink coefficients to-
wards zero by L2 and L1 constraint, respective-
ly. The Lasso penalty is defined as

[1]

i.e. the L1 norm of the regression coefficient, whi-
le the Ridge penalty takes into consideration the
L2 norm

[2]

Ridge regression was first suggested by Hoerl [16]
to overcome situation in which correlations bet-
ween the predictors give rise to unstable parameter
estimates. L1 penalized regression has been re-
viewed by Lokhorst [17]. An important property
of the L1 penalty is that it can generate exact zero
estimates of the coefficients. This means that it can
be viewed as an automatic variable selection me-
thod, where some of the variables are eliminated
from the model as the penalization becomes
stronger [18].

Recently penalized regression was extended to cen-
sored survival data [25].
Several modified approaches to penalized Cox re-
gression models have been proposed [29][7].
Usually penalized Cox regression is combined with
cross validation methods in order to select the best
degree of constraint [5].
In this paper we use a Ridge regression approach
to the analysis of censored survival data from mi-
croarray experiments.
Our aim is to assess the net effect of a given gene
while adjusting for other genes. We propose to
avoid selection of the best degree of constraint in
penalized regression, but to consider the behavior
of the estimated coefficients varying the degree of
shrinkage. Similar approaches can be found in li-
terature [16].
We provide an example of this approach by
using two real data sets. The first data set comes
from a study on colorectal cancer [6] and the se-
cond from a study on lung cancer [4]. In both ap-
plications, after having adjusted for other relevant
prognostic factors and after taking into conside-
ration the whole genomic information, we consi-
dered the net contribution of each gene on survi-
val. In doing this, for reasons of simplicity, we pre-
liminarily selected a subset of candidate genes, fol-
lowed by specification and fitting of a L2 pena-
lized Cox regression model. For comparison, we
applied on the same data sets a L1 penalized re-
gression. Comparison between L1 and L2 pena-
lized regressions in analysis of censored survival
data can be found also in [5]. We then carry out
simulations to further illustrate the performance
of the methods.

Data

ITT Colon Cancer Data
The first dataset was relative to a study sponso-
red by ITT (Istituto Toscano Tumori), which was
aimed at discovering potential markers of prognosis
in colorectal cancer [6]. This study was restricted
to Duke’s stage C and D, G2 grade, adenocarci-
noma histotype. All patients had surgery and fluo-
ropyrimidine-based chemotherapy. Primary tumors
were obtained immediately after resection. Gene
expression profiles were obtained from 19 patients
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using cDNA microarrays. The dataset considered
in this analysis was comprised of 2587 genes ove-
rall. All the patients were followed up on until their
death or until end date of the study. The study star-
ted on June 1, 1994, ended on March 30, 2006. We
observed 13 deaths. The median value of survival
obtained through the Kaplan-Meier estimator
was 38.63 months. Main clinical markers were Du-
ke’s stage, C1/C2 and D, location of tumor (rec-
tum, junction, sigma and transverse colon), age at
surgery and gender. According to the Duke’s clas-
sification, 7 patients were classified as stage C1,
5 as stage C2 and 7 as stage D. In 11 patients the
tumor was localized in the transverse, sigma or
right colon, while in 8 patients it was localized in
the rectum. Patient age at time of surgery was bet-
ween 46 and 71 years old.

Bhattacharjee’s Lung Cancer Data
The second dataset was related to lung cancer pa-
tients [4]. The data consists of gene expressions
of 12600 genes for 125 patients. The patients were
classified according to the progression of the di-
sease. 61 patients were classified as stage I; 36
as stage II; 18 as stage III; 10 as stage IV. For each
of the 125 patients, the survival time as well as
the censoring status was available. There were 63
failures. The median value survival obtained
through the Kaplan-Meier estimator was 37.6
months. Information about patients’s age was also
available.

Methods

The statistical analysis was based on a two-steps
procedure [20]. In the first step of the analysis, once
we have accounted for the effect of other relevant
prognostic factors, we ranked genes according to
their ability to predict survival. Then, in the second
step of the analysis, the list of the K top genes was
included in the penalized regression models.
This step is necessary to adapt the penalized Cox
regression to microarray data. The typical mi-
croarray dataset contains thousands of genes, but
the algorithm tends to become slow when the num-
ber of covariates is much higher than the number
of samples. Applying the method to a rank-orde-
red list of genes is a common solution, [3].

First step: Preliminary Selection

The preliminary selection was done specifying a
Cox regression model for each gene separately. It
aims to select a subset of candidate genes for the
subsequent penalized regression analysis. We
started from a ”core” model which did not inclu-
de gene expression, but took into account for other
prognostic variables (z1, z2, ..., zm):

[3]

where h(t; z1, z2, ..., zm) denotes the hazard fun-
ction, given the values of the covariates (z1, z2, ...,
zm), (γ1, γ2, ..., γm), are unknown parameters and
h0(t) is the baseline hazard function.
For the first data set, the core model included as
covariates sex, age at time of surgery (≤ 65,> 65),
Dukes stage of the tumor (C1, C2, D) and tumor
location (not rectum, rectum). For the second data
set, stage of the tumor (I, II, III, IV) and patient
age (< 50,50 − 70,> 70) were considered. Then we
extended the ”core” model adding a linear term
for the relative expression values of each gene. For
the gth gene, the extended model was the follo-
wing:

[4]

where gk is the expression value of the kth gene
and βk is the unknown gene specific regression co-
efficient.
Gene ranking was based on the Rao’s generalized
score test statistic for the coefficients βk. Let U(γ1,
γ2, ..., γm, βk) be the partial score vector and J(γ1,
γ2, ..., γm, βk) be the (m + 1) × (m + 1) observed
information matrix for the model (4). The gene-
ralized score test statistics for βk can be obtained
from the following equation:

[5]

where (γ̂ 1, γ̂ 2, ..., γ̂m) m) is the vector of the Par-
tial Maximum Likelihood estimates of the ”core”
model (3) coefficients.
The advantage of ranking according to the score
test statistics is that having the ”core” model (3)
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fitted the X2 statistics can be obtained directly wi-
thout fitting the extended model (4). This implies
that with a strong gain in terms of computational
burden the iterative procedure for maximization
of the Partial Likelihood of the extended model is
not required. This is particularly true here, due to
the large number of genes to be included, becau-
se we were considering many extensions of the
core model.
More details on the score test calculation are pre-
sented in the appendix.
Ad hoc codes were written in R-language for cal-
culating the generalized score test statistics and for
ranking genes (available on request).

Second step: Penalized Regression

In the second step of the analysis, the subset of K
candidate genes selected according to the score test
statistics were included in a penalized Cox re-
gression model. Let (g1, g2, …, gK) be the vector
of relative expression values of the K selected ge-
nes. These were included simultaneously in the
Cox model:

[6]

Then a constraint was specified on the gene ex-
pression coefficients (φ1, φ2, …, φk). We conside-
red a quadratic constraint following a Ridge re-
gression:

[7]

The introduction of the constraint reduces the
effective number of parameters to be estimated.
In our case, this allowed the estimation of a mo-
del where the number of parameters is higher
than the number of observations. The conse-
quence of such constrained estimation is that all
gene expression coefficients (φ1, …, φK) are
shrunk toward zero, while the coefficients re-
lative to the other prognostic variables are left
unconstrained.
The model (6), under the constraint (7), can be esti-

mated maximizing the penalized partial log-like-
lihood:

[8]

for some number θ ≥ 0. The function �(..) =
log(L(..)) is the Partial Log-Likelihood where in
general

[9]

θ in (8) is usually referred to as the smoothing, re-
gularization or penalty parameter. θ is a function
of s and controls the amount of shrinkage of the
constrained parameters. Large values of θ corre-
sponds to a strong constraint, while small values
of θ give less smoothed coefficients. θ has a very
interesting Bayesian interpretation: it represents
the prior expectation on the magnitude of gene ef-
fect on outcome.
In order to detect genes which are conditionally
related to survival, we considered the regulariza-
tion patterns of the gene expression coefficients.
The regularization pattern for a constrained co-
efficient is defined as the set of the estimated va-
lues of that coefficient varying the penalty para-
meter.
For comparison we used a L1 penalized Cox re-
gression model, previously proposed for this
kind of data [18]. The L1 penalized model intro-
duces a constraint on the absolute value of the gene
expression coefficients of the model (6):

[10]

The model can be fitted maximizing the penali-
zed Partial Log-Likelihood:

[11]

L1 penalized regression is usually considered as
a method for variable selection, because by in-
troducing the constraint (10), most of the estimated
coefficients would be set exactly to zero.
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The penalized Partial Log-Likelihood (8) was ma-
ximized using the algorithm implemented in the
survival library of R software (coxph function with
ridge option) [13]. The L1 penalized Cox regres-
sion model (11) was estimated using the algorithm
proposed by Park and Hastie (2006) [18] and im-
plemented in the glmpath library of R software.
This algorithm uses the predictor-corrector method
to determine the entire path of the coefficients’s
estimates as the penalty parameter varies. An ap-
plication of this algorithm for the Cox regression
model can be found in [19]. Other software like
the penalized library of R software by J Goeman
developed for penalized estimation in generalized
linear models, support the Cox Proportional Ha-
zard Model.
In the penalized regression models the gene ex-
pression values were re-scaled to have unit va-
riance.

Simulation Study

We assessed the performance of the proposed me-
thod by a simulation study. The purpose was to
show that the proposed approach selects the ge-
nes which are most related to survival under dif-
ferent correlation scenarios. We conducted si-
mulations on both L1 and L2 penalized model to
illustrate the different behavior of the two penal-
ties.
Pseudo gene expression values were generated
sampling from a multivariate normal distribution
with the mean vector equal to 0 and exchangea-
ble correlation structure:

[12]

5000 covariates were generated under three dif-
ferent correlation scenarios, setting the correlation
parameter   equal to 0, 0.3 and 0.6. Since each gene
has the same correlation with every other gene, the
simulated scenario is much simpler than the real
one; while in real data, only groups of genes are
correlated with each other at different correlation
levels.
The correlation patterns of real data are difficult
to reproduce. In any case, this application on the

simpler simulated scenario provides a check that
the method is properly working and offers an
example to show the trade off between error and
variance (see results).
Pseudo survival time for the i − th subject was si-
mulated according to the following model:

[13]

where ε
i
~ N(0, 10). We set the coefficient for the

k − th gene equal to 0.3 for 1 ≤ k ≤ 5, −0.3 for 6
≤ k ≤ 10 and 0 for 11 ≤ k ≤ 100.
Censoring times were simulated sampling from a
normal distribution N(0, 10) + c where c is cho-
sen to yield about a 20% censoring rate.
The sample size was set equal to 125. We analy-
zed each pseudo data set using both a L1 and a L2
approach after marginal pre-selection.

Results

ITT Colon Cancer Data

The penalized Cox regression model considered
stage and location of the tumor, gender and age
at time of surgery as relevant markers and the ex-
pression values of 60 candidate genes resulting
from the preliminary selection (see Section 2.1).
In Figure 3.1 the regularization patterns of the co-
efficients of the 60 top ranked genes from the L2
penalized Cox regression model are plotted. In-
creasing the penalty parameter θ, the estimated va-
lues of gene expression coefficients become clo-
se to zero. A small subgroup of genes (AGRP,
UCK1, TBC1D7, FLJ22175, DEFB1, TXNL2,
SURF2) is clearly separated from the rest of gene
patterns [16]. Their coefficient estimates are ne-
gative indicating that a high gene expression va-
lue is associated to a reduced risk of death.
The L1 penalized Cox regression model gave si-
milar results, (Figure 3.2). In particular four ge-
nes are detected by both methods.
The penalized Cox regression model considered
stage of the tumor and age of patients as relevant
markers and the expression values of 60 candidates
genes resulting from the preliminary selection (see
Section 2.1).
As for the ITT data, the stage of the tumor was the

Using regularization patterns from penalized regression in microarray experiments

BIOMEDICAL STATISTICS AND CLINICAL EPIDEMIOLOGY 2010; 4 (1): 35-46 39



most relevant prognostic factor. Age also resulted
in being significantly influential on survival (re-
sults not reported).
The results of the L2 penalized Cox regression mo-
del are reported in Figure 3.3. Six genes appear

to be more related to survival: RBTN1, ES1,
TMCO1, IL1B, KBTB2, NFKB2.
When we applied L1 penalization, we found si-
milar results (Figure 3.4). Three genes were related
to survival under both approaches.
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Figure 3.1. Regularization patterns of the coefficients of the
60 top ranked genes from the L2 penalized Cox Regression
model for the ITT data. The coloured lines represent the co-
efficients for the following genes: DEFB1, TBC1D7,
UCK1, AGRP, FLJ22175, SURF2, TXNL2.

Figure 3.2. Regularization patterns of the coefficients of the
60 top ranked genes from the L1 penalized Cox regression
model for the ITT data. The coloured lines represent the co-
efficients of the following genes: TBC1D7, UCK1, GHRH,
FLJ22175, AGRP, ITGB2.

Figure 3.3. Regularization patterns of the 60 top ranked
genes of the Batthacharjee’s data from the L2 penalized Cox
regression model. The coloured lines represent the coeffi-
cients of the following genes: RBTN1, ES1, TMCO1, IL1B,
KBTB2, NFKB2.

Figure 3.4. Regularization patterns of the coefficients of the
60 top ranked genes of the Batthacharjee’s data from the L1
penalized Cox regression model. The coloured lines repre-
sent the coefficients of the following genes: RBTN1,
ZC3H3, SKIP, ES1, KBTB2, PKHC1.



Simulation Studies

For each scenario, 500 runs were simulated. In Fi-
gure 3.5 we report for each gene the average re-
gularization pattern calculated over the 500 si-
mulations. The average regularization patterns of
the genes which are related to survival are plot-
ted as dashed lines. We can see that as the data cor-
relation increases the separation between relevant
and non relevant genes becomes less clear. Ho-
wever the dashed curves remain always the more
external with respect to the others. For each va-
lue of the penalty parameter, we calculated the
squared bias and variance of the estimator of each
gene-expression coefficient:

[15]

[16]

where β0 is the true value of the gene expression
coefficient, β̂j is its estimated value under a spe-
cific value of the penalty parameter and β̄ is the
average of the estimated values over the 500 si-
mulations.
In Figure 3.6, we show squared bias and varian-
ce of the regression coefficient estimator for one
of the genes that are related to survival. We report
results for L1 and L2 approach, under the three
different correlation scenarios (corr = 0, corr =
0.3, corr = 0.6). The trade off between error and
variance is clearly evident. Even if the choice of

a specific value for the smoothing parameter is not
the aim of the present work, it should be noted that
if the interest is in selecting θ, this can be done
by considering the region where the bias is still
of the same order of magnitude as the variance.
In this way we control the variance-bias trade off.

Discussion

Biological Significance of ITT 
Data Analysis Results

According to the present analysis there are four
genes discovered by both methods as associated
with survival. Two out of four might have a direct
role in better response to chemotherapy. FLJ22175
induces chromosomal instability as well as hy-
persensitivity to DNA cross-linking agents in-
cluding a number of chemotheutic agents. UCK1
is an homologous UCK2, reported to play a cru-
cial role in activating anti-tumor pro-drugs in hu-
man cancer cells [22].
The other two genes TBC1D7 and AGRP do not
have a clear association to cancer, but are relevant
for fundamental processes important for the su-
sceptibility to cancer. TBC1D7 is involved in G-
protein signal transduction. Another gene of this
class GHRH, reported expressed in pituitary tu-
mors and Adenomas, has been discovered to be as-
sociated with good prognosis with the L1 pena-
lized model, but not with the L2 model.
AGRP may play a role in the central control of fee-
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Figure 3.5. Averaged regularization patterns calculated over
the 500 simulations. The dashed lines represent the genes
with real values of the coefficients different from zero.

Figure 3.6. Bias (solid line) and variance (dashed line) of the
regression coefficient estimator for one of the genes which
are related to survival varying the smoothing parameter.



ding. Its overexpression could be associated with
fat infiltration and inflammatory response. Ano-
ther gene associated in survival by L2 analysis is
DEFB1, a gene controlling the innate immune re-
sponse to bacterial infection. Loss or underex-
pression of DEF1B has been reported in renal and
prostatic carcinomas [8]. DEFB1 overexpres-
sion has been reported to induce apoptosis and this
gene is proposed to be a tumor suppressor [23].
ITGB2, gene involved in leukocyte migration du-
ring inflammatory response, was discovered by L1
analysis to be associated with poor survival [6].

Biological Significance in Bhattacharjee’s 
Data Analysis Results

Among the genes that we discovered from the L2
analysis one can notice IL1B (produced by acti-
vated macrophages, inducing IL-2 release, B-cell
maturation) which could be a sign of macropha-
ges or B cells infiltration of the tumor.
A second important candidate, NFKB2, is also in-
volved in the immune response. These findings
could indicate that activation of the inflammato-
ry response is a marker of gravity and enhanced
tumor progression, as supported also by classic tu-
mor classification and the analysis performed on
colon cancer (see above). Among the other genes
discovered as important, KBTB2 and TMCO1 are
so far poorly characterized, but reported to be ex-
pressed in the lung.
Two genes, RBTN1 (from both the analyses) and
ZC3H3 (from L1 only), not previously associated
with lung cancer could play an important role and
are reported to be transcriptional activators.
Considering the larger list of 60 genes included
in the penalized models, we should notice the pre-
sence of BMP7 and of ASCL1, part of Cluster C2
also associated with survival in the paper from
Bhattacharjee [4]. It is worth noticing that a gene
of the BMP family, BMP6, was previously reported
[15] as being associated with survival among the
squamoid tumors.

Methodologic Issues

In this study we analyzed the prognostic value of

gene expression in predicting survival of cancer
patients using a penalized regression approach. We
applied this method on two different data sets. The
advantage of this approach is to estimate the net
contribution of differential gene expression, given
other relevant prognostic variables and the con-
ditional relationship among genes. We applied a
two step procedure. After having pre-selected the
genes which are mostly related to survival by an
univariate analysis, we applied L2 penalized re-
gression.
Our method intends to evaluate whether or not a
gene has an effect on survival. This can be seen
as a test for trend.
We are not interested here in modeling the dose-
response curve. In literature we find several
example of fully non parametric methods like ker-
nel machine or principal value decomposition [10].
The preliminary selection, performed as a first step,
is intended to reduce the complexity of the pena-
lized model. In literature there are examples of mo-
dels where pre-selection cannot be avoided, as we
can see in [3] where they rank genes using Cox
Proportional Hazards Model. This pre-selection is
obviously critical because it can bring to biased
results. First, it precludes any chance of detecting
genes that are conditionally but not marginally re-
lated to survival.
Second, we adjusted the effect of each pre-selec-
ted gene for the other pre-selected genes only and
not for the entire gene expression matrix. This can
increase the number of false negatives and false
positives in a way that can not be simply quanti-
fied.
In principle we could evaluate the impact of pre-
selection on the final results by permutation. Ho-
wever applying permutation methods is not trivial
in this context because of the presence of cova-
riates. The problem is in reproducing by permu-
tations the distribution under the null hypothesis
of partial random association. While solutions are
proposed for linear models [2], use of permutation
tests in censored survival data analysis is not lar-
gely discussed in literature and permutation tests
in a multivariate Cox model is an open issue.
A partial answer to pre-selection consequences co-
mes from the L1. In fact, we should note that L1
penalty allows the inclusion of a higher number
of covariates in the model because the stronger con-
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straint allows one to obtain stable results even if
the entire set of genes is included in the predic-
tor. To evaluate if pre-selection affects results, we
applied the L1 penalized model to a larger group
of genes (120 genes) and to the entire gene ex-
pressions matrix (2587 genes).
The results were consistent with the ones obtai-
ned after pre-selection (results not reported).
This fact indicates that in our example pre-selec-
tion does not largely affect results and that the choi-
ce of K = 60 is not sensitive.
In literature, several methods have been proposed
for automatic selection of the regularization pa-
rameter in L1 and L2 penalized regression. They
are usually based on Cross Validation, Generali-
zed Cross Validation, bootstrap or algorithms like
the elastic net [24] [29]. In our application no choi-
ce of the penalty parameter was done, but relevant
genes were explored looking at the regularization
patterns [16][28]. For several reason we prefer to
look at the entire regularization patterns instead
of selecting the smoothing parameter. First, pe-
nalized regression can be used when the number
of covariates is larger than the sample size. This
is an ill posed problem which requires some ad-
ditional assumptions in order for a stable solution
to be obtained. From a Bayesian point of view, the-
se additional assumptions express our prior belief
about the problem. In our particular situation, each
specific value of the regularization parameter cor-
responds to a specific prior belief about the gene
expression coefficients. Looking at the entire re-
gularization pattern, we are not super-imposing any
specific prior on genes coefficients, expressing our
ignorance about the predictive value of gene ex-
pression on survival. The natural extension of our
approach is a fully Bayesian penalized model
which combines data information and prior belief
on the regularization parameter in a posterior joint
distribution, which has a model averaging inter-
pretation. Adapting an informal Bayesian method,
the researcher can choose the preferred range of
the penalty parameter. For example, relying on the
fact that small values of the coefficients are more
realistic, one can give more importance to the right
region of the regularization curves where the pe-
nalty parameter has larger values.
Secondly, regularizations patterns are very infor-
mative. In principle, they can be used to understand

the complex interplay among covariates [16]. Once
the regularization patterns are reported, selecting
the smoothing parameter via a smoothing para-
meter selector (such as GCV) would not give any
additional information. Moreover, it is known that
standard practices based on cross-validation tend
to select overparametrized models, while criteria
like BIC tend to prefer less complex models [21].
This indicates that each specific selector has an un-
derlying prior assumption, but it is not explicitly
specified.
The regularization pattern gives a two-dimensio-
nal portrait of the effect of correlation among co-
variates [16]. For example it can happen that a co-
variate has the negative coefficient with the largest
absolute value when θ = 0, but the increase of the
smoothing parameter quickly drives it toward zero
becoming even positive. This could be explained
by the fact that this covariate has a strong corre-
lation with another one and they are stable as a
sum. This behaviour is not atypical, especially
when the covariates are correlated to various de-
grees with other factors. So looking at the entire
regularization patterns gives us an idea of the com-
plex correlation structure among genes.
For comparison purposes, we specified and fitted
also a L1 penalized Cox regression model because
it is a popular approach in expression data analysis
[5]. Under the L1 model, increasing the regulari-
zation parameter, for the most part, the estimated
coefficients become exactly zero. Therefore the rea-
der should notice that fixing the smoothing para-
meter is equivalent to selecting a ”best” subset of
predictors.
This application shows that even if in both ap-
plications a common subset of genes can be de-
tected, L2 and L1 penalized Cox regression mo-
dels give similar but not exactly equal results. Di-
screpancies are explained by the fact that the two
methods rely on different assumptions and their
performance depends on data characteristics.
Statistical properties of L1 and L2 penalized re-
gression models and differences between the
two penalty approaches already have been explored
[25] [24] [14]. Here we can recall known cha-
racteristics of the two approaches which can be
useful for interpreting the results of the penalized
regression and, as a consequence, can motivate a
method choice.
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From a Bayesian point of view, it can be shown
that L2 penalized regression assumes a Gaussian
prior distribution for the coefficients, while L1 pe-
nalized regression assumes a double exponential
prior distribution [11]. The double exponential di-
stribution produces more mass near zero and in the
tails. This is the reason why under the L1 appro-
ach coefficients’s estimates are either larger than
zero or zero than under L2 approach [12]. Ridge
regression tends to retain small parameters. This
implies that if the true model includes many small
but non-zero regression parameters, L1 will per-
form poorly while L2 will perform well. If the true
model includes many zero parameters, L1 will out-
perform L2 [24].
Regarding data characteristics, we have to consi-
der multi-collinearity among covariates. In fact,
the amount of shrinkage of the coefficients varies
under L1 or L2 penalization, depending on mul-
ti-collinearity [24]. Under the L2 penalty, groups
of correlated variables can be selected together
[29]. On the contrary, given a set of highly cor-
related variables associated with outcome, pro-
cedures that employ a penalty function that is not
strictly convex, like the L1 penalty, often will iden-
tify only one of the variables and ignore the others
[24].

Conclusion

The penalized Cox regression model is a useful
tool in genomics data analysis when we want to
estimate the predictive value of gene expression
on survival while taking into account for other pro-
gnostic variables. The L2 penalized regression ap-
proach allows to simultaneously modeling of the
contribution of several candidate genes.
Some considerations indicate the L2 penalized re-
gression as a more appropriate approach in this
context than L2.
The tendency of the L1 penalty to identify only one
gene within a group of correlated variables is a li-
mitation in the analysis of gene expression data
where the identification of a whole set of corre-
lated genes may lead to an improved understan-
ding of the biological pathway. This point should
be taken into account in interpreting the regression
results.

Moreover, in presence of strong correlation, L1 pe-
nalization can bias effect estimates. Indeed, when
one gene coefficient is set exactly to zero, the co-
efficients of the correlated genes are no longer ad-
justed by his presence and can suddenly grow or
decrease. We can say that when one gene is ex-
cluded from the model, we do not adjust for it. As
the regularization parameter increases, the con-
ditions under which we estimate the model chan-
ge. On the contrary, in the L2 penalized regression
approach, we always adjust for all the rest of the
genomic information, since every genes is always
present: even if shrunken toward zero the coeffi-
cient never leaves the model.
Regarding the choice of the regularization para-
meter, we propose to avoid selection and consi-
der the entire regularization patterns varying the
penalty parameter. A future step would be to ex-
plicitly insert a prior distribution on the penalty pa-
rameter. The natural extension of our approach is
a fully Bayesian penalized model which combi-
nes data information and prior belief on the re-
gularization parameter.
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Appendices

Details on Score Test Calculation

In our context we need to consider many exten-
sions to a model adding one out of many new ex-
planatory variables (genes). Doing this we may
wish to avoid maximizing the Likelihood under
each extended model. This is what Rao’s score tests
do, by approximating the log-likelihood from its
shape at β0. Indicating with η = (γ

i
, β) the vector

of the unknown parameters, the partial likeliho-
od can be written as:

[16]

where Z is the vector of the expressions of the co-
variates considered in the model for the ith sub-
ject, M gives the number of the subjects who ex-
perience the event and R

i defines the risk set when
the ith event happens.
Weighting each subject according to his relative
risk, we can now define the mean vectors –Z

i(η), i
= 1, …, M

[17]

and the variance vectors V ar Z
i
(η)

[18]

The partial log-likelihood is defined as

[19]

so the score vector is

[20]

and the observed information:

[21]

The score vector under the null hypotesis β = 0 is
given by

[22]

where γ̂1, ...,γ̂p are the partial maximum likeliho-
od estimates of the parameters under the model wi-
thout the gene effect (β = 0), and U

g
is the first ele-

ment of the U(η) vector, calculated in β = 0. Wri-
ting J = [Jij] = [I(η)]|(0,γ̂1, ...,γ̂p), the test statistic can
be written as

[23]

where J11 is the element (1, 1) of the inverse ma-
trix J−1.
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