
INTRODUCTION

A recently debated subject is whether sample si-
zes should to be calculated on the basis of the po-
wer for demonstrating a relevant effect such as a
standardized difference (δ/σ) or effect size (1), or
on the basis of the precision of the effect estima-
te such as a required width or half-width of the con-
fidence interval (usually standardized) according
to McHugh and Le (2), Greenland (3), Bristol (4),
Goodman and Berlin (5), Borenstein (6), Nice-
wander and Price (7), Feinstein and Concato (8),
and Hahn and Meeker (9).

The latter approach is strongly supported by the
fact that, unlike the statistical significance of a test,
a confidence interval (CI) precisely characterizes
the magnitude of the effect. On the other hand, con-
fidence interval-based sample sizes give a pro-
bability of obtaining the required precision of about
0.50, and, in addition, allow a power of about 0.50
in demonstrating an effect size (δ/σ) equated to the
standardized CI half-width chosen as a precision
threshold.
Kupper and Hafner (10), Grieve (11), and Beal (12)
proposed to augment the sample sizes calculated
on the basis of a CI required width (or half-width)
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for increasing the probability that the sample con-
fidence interval widths (or half-widths) are less
than the required precision threshold, expressed
as a function of estimated standard deviation units;
in addition, Beal (12) defined this probability as
the CI power and considered the sample size cal-
culation conditionally on the fact that the confi-
dence interval includes the true value of the pa-
rameter of interest.
Grieve (13) gave an alternative calculation method
without the numerical problems noted by Beal (12)
and considered the uncertainty about the varian-
ce by incorporating it through a prior distribution.
Finally, Wang and Kupper (14) extended this CI-
based sample size calculation approach to the case
of the heteroskedasticity of two normally distri-
buted populations, unconditionally and conditio-
nally on the coverage.
However, following the above suggestions, only
the sample sizes for the highest values of the CI
power, in the case of standardized CI half-widths
> 1.20, give a satisfactory test power to demon-
strate the same value of the effect size, as it can
be immediately seen from the tables produced by
Machin et al. (15); therefore, power values are un-
satisfactory for demonstrating a small (0.2), me-
dium (0.5) or even large effect size (0.8) according
to Cohen (1).
Finally, Jiroutek et al. (16) have proposed a new
method for calculating sample sizes for CI-based
inferences that, starting from a required width, si-
multaneously considers width, validity (term
used to describe whether or not “the parameter of
interest is contained between the observed upper
and lower confidence interval bounds”) and re-
jection in an attempt to answer what they defined
“the clinician’s best question”: “given validity, how
many subjects are needed to have a high proba-
bility of producing a confidence interval that cor-
rectly does not contain the null value when the null
hypothesis is false and has a width not greater than
the required width?”. However, a calculation ap-
proach focused on a high precision can give sam-
ple sizes much greater than the power-based
ones (as the Table 2 on page 584 of the Jiroutek
et al. (16) paper shows), thus leading to substan-
tial doubts concerning the real feasibility of the stu-
dy and, consequently, the practical usefulness of
the Jiroutek et al. (16) method. 

So, it seems that the sample size calculation me-
thod proposed by the statistical literature for con-
sidering together the precision of an effect estimate
and for demonstrating an effect has to rely on an
approach based on a CI required width; however,
this approach is not consistent with the regulato-
ry ICH E9 Guideline (17) in which it has been sta-
ted that “the usual method for determining the ap-
propriate sample size has to be based on the sta-
tistical test for the primary analysis”. Indeed, it has
to be stressed that it is unethical to enroll in con-
trolled clinical trials more patients than the ne-
cessary sample size for demonstrating a clinical-
ly relevant difference with a satisfactory statisti-
cal test power (0.80-0.90); accordingly, it is not
appropriate to consider sample size calculation for
a required width if the obtained sample sizes give
unsatisfactory statistical power values, or if they
are too much greater than the power-based values
for demonstrating a clinically relevant alternati-
ve hypothesis.
In agreement with the above outlined ethical point
which is also very important for the actual feasi-
bility of a study, Cesana et al. (18) and Cesana (19)
considered respectively the comparison of a pro-
portion against a reference value and the compa-
rison of two paired and unpaired proportions and
devised a sample size calculation approach based
on a “two-step” procedure. Particularly, starting
from the expected width of the CI under HA (EW),
given the power-based calculated sample size, and
the probability of obtaining confidence intervals
whose width is less than the expected one (PWLE),
they proposed to iteratively increase the power-
based sample size until PWLE reaches a prefixed
satisfactory value without conditioning on the co-
verage.
So, the increased sample size, obtained at the ite-
rative second step of the “two-step” procedure, al-
lowed obtaining the power of the statistical test (ob-
viously increased from the value of 0.80 at the star-
ting sample size) or the precision of the effect esti-
mate (probability of obtaining a sample confidence
interval with a width less than EW, given that EW
fulfilled the precision needs of the study). In ad-
dition, during the iterative second step of the “two-
step” procedure, it has been described the sawto-
oth behavior of the power, of the PWLE function,
and of the probability of obtaining a 95% CI width
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shorter than EW and a statistically significant re-
sult (PWLE∩SS). Furthermore, Cesana (19) showed
that in order to combine the test power and the CI
power, the “two step” procedure could also be im-
plemented for a starting sample size calculated for
a required CI width (sensibly chosen according to
HA), but considering also the test power of the in-
creased sample size, as an useful extension of Bea-
l’s proposal (12) based only on the CI power.
The aim of this paper is to propose a new sample
size calculation method in agreement with the re-
gulatory requirements and the first priority of a re-
searcher of demonstrating a clinically relevant dif-
ference; this method is naturally based on the in-
trinsic relationship between the power-based
sample size and the precision of the effect estimate
and goes beyond the limits of the usual power-
based calculation approach that does not consider
the precision of the effect estimation. This method
is based on: (i) calculating the power-based sam-
ple size; (ii) considering the precision of the ef-
fect estimate by calculating the standardized Ex-
pected Half-width (EH) of the CI together with the
probability of the event WE given by sample CI
standardized half-widths less than EH, conditio-
nal on the coverage (the interval contains the pa-
rameter under the alternative hypothesis), say
P(WE|C); furthermore, a very broad scenario of the
precision of the effect estimation given by the po-
wer-based sample size can be shown by calcula-
ting several values of standardized half-widths (Hj)
together with the conditional probability of the
event WHj given by sample standardized CI half-
widths less than Hj, say P(WHj|C); (iii) thereafter,
iteratively increasing the starting power-based sam-
ple size to achieve an appropriate value of the joint
probability function, conditional on the coverage
P(S∩WE|C), that combines the power of the sta-
tistical test (say, P(S) as the probability of the event
S, given by a statistically significant result) and the
power of the confidence interval P(WE); this step
it is shown by considering EH as an appropriate
and meaningful precision threshold, but it can be
easily adapted to any chosen precision threshold.
Nevertheless, it is important to focus that EH to-
gether with P(WE|C) can be considered as a rele-
vant starting point for taking into account the pre-
cision of a research, given the power-based sam-
ple size.

Furthermore, steps (i), and (ii) can be carried out
at different values of the test power (say, 0.80, 0.85
and 0.90) for achieving the best balance between
the needs of the effect precision estimate together
with the power of the study and the actual feasi-
bility of the study. 
The proposed method considers the CI coverage
according to Lehmann’s statement (20) that “the-
re is no merit in short intervals that are far away
from the true”. However, it can be argued at least
from a pragmatic point of view, that in sample size
calculation the parameter under HA is not the fi-
xed unknown parameter representing the true sta-
te of nature (16), but is just the minimal clinical-
ly relevant difference (the lowest threshold of the
true state of nature) that needs to be chosen for cal-
culating conservatively the greatest sample size;
in addition, as a further pragmatic consideration,
the sample sizes obtained conditionally or un-
conditionally on the coverage are practically the
same for the most frequently considered alterna-
tive hypotheses in the biomedical research (12),
even in the case of a moderate heteroskedastici-
ty (14).
The proposed method will be described for the case
of one mean (or the difference between one
mean and a reference value or the difference of two
paired means) and the difference of two means of
Gaussian distributed variables using one- or two-
sample Student’s t-tests as particular cases of sca-
lar hypotheses in linear models.

STATISTICAL METHODOLOGY

Power-Based Sample Size Calculation
In the case of the one-sample Student’s t-test, the
null hypothesis is H0: µ = µ0 (µ0 being a referen-
ce value or 0 for the paired-data case as in the cros-
sover design of controlled clinical trials) against
an alternative hypothesis such as HA: µ = µA, whe-
re µA - µ0 = δ. In the case of the two-sample Stu-
dent’s t-test as in a controlled clinical trial ac-
cording to a parallel group design, the null hy-
pothesis is H0: µ1 - µ2 = 0 against HA: µ1 - µ2 = δ.
So, δ is the clinically relevant difference.
It has to be stressed that even if the analysis of va-
riance is the standard statistical approach for the
two-treatment two-period crossover trials analy-
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sis, their sample size calculation is usually based
on a paired t-test; furthermore the period adjusted
t-test for the treatment effect gives the same pro-
bability result as the analysis of variance (21).
The power-based sample sizes (n0) for demon-
strating δ are obtained by iteratively increasing a
starting value (n in one group or n in each group
with equal numbers), and consequently the non-
centrality parameter λ (δ/σ√k with k = 1/n for the
one-sample test, or 2/n for the two-sample test) of
a non-central t distribution, until the area from 
-∞ to t1-α/2,ν of a non-central t distribution is lower
than the probability of the type II error (β); t1-α/2,ν
is the (1-α/2) quantile of a central t distribution with
ν degrees of freedom (n0-1 for the one-sample test
or 2(n0-1) for the two-sample test), and α is the si-
gnificance level (two sided).
This step can be easily carried out, for example,
by means of the SAS® (22) functions Tinv and
Probt: the first gives the quantiles of central or non
central t distributions and the latter the cumulati-
ve density function of central or non central t di-
stributions. Furthermore, this sample size calcu-
lation can be carried out by resolving by nume-
rical method the integral of the product of a stan-
dardized Gaussian distribution and a central χ2 di-
stribution according to equation 1.1 shown in Ap-
pendix 1.

Confidence Interval Standardized Expected
Half-Width (EH), Unconditional Confidence In-
terval Power (P(WE) and Conditional Confi-
dence Interval Power P(WE|C).
Given the power-based sample size, the CI half-
width under HA is calculated as t1−α/2,νσ√k, since
σ is assumed to be known at the sample size cal-
culation phase; the standardized half-width (t1−

α/2,νσ√k) is the standardized Expected Half-width
(EH) (10, 23). Indeed, the expected value of the
sample standardized half-width of the confiden-
ce interval t1−α/2,νσ√k/σ) is t1−α/2,νσ√k, since σ√ν/σ
is a chi-distributed variable (χν) with n degrees of
freedom. In fact, we have:

with a negligible bias (<2.8%) for n > 10 (24). 
The unconditional confidence interval power,
considered as the probability of obtaining sample
standardized CI half-widths ≤ EH, is defined as:
P(WE) = Pr{t1−α/2,νσ√k s ≤ t1−α/2,νσ√kσ} and it can
be calculated by resorting to the χ2 distribution with
n degrees of freedom, since νs2/σ2 is a χ2

ν distri-
buted variable with ν degrees of freedom. Since 

P(WE) can be obtained by integrating a χ2 densi-
ty function from 0 to νEH2/ (t1−α/2,νσ√k)2 equal to
ν, being EH = t1−α/2,νσ√k.
This calculation, that with EH2 = h2 / σ2 corre-
sponds to equation (1) of Grieve (13), can be ea-
sily carried out, for example, by means of the SAS®

(22) function Probchi that gives the cumulative
density function of central or non central χ2 di-
stributions.
Furthermore, the CI Power conditional on the co-
verage (P(WE|C)) is obtained by dividing the joint
probability that the standardized sample confidence
interval is ≤ than EH and includes the parameter
under HA [P(WE∩C)] by the confidence coefficient
(1-α) or, equivalently, by the probability covera-
ge P(C); P(WE∩C) is calculated, owing to their in-
dependence, by the integral of the product of a cen-
tral χ2 distribution [fx2(x2)] and a standardized
Gaussian distribution [(fZ(z)], according to equa-
tion 2.4 in Appendix 2, as:

In addition to P(WE|C), given by P(WE∩C) / (1-
α), this equation allows calculating relevant con-
ditional probabilities (P(WHj|C)) together with other
(standardized) CI half-widths (Hj) at which sam-
ple standardized CI half-widths (Wx) are expec-
ted to be lower (see Appendix 2); these values give
an exhaustive scenario of the precision of the ef-
fect estimate allowable by the power-based sam-
ple size together with the probability of obtaining
it and, furthermore, they can suggest a sensible
choice of the precision threshold instead of EH.
Finally, if the researcher’s precision choice is sen-
sibly expressed in the terms of a percentage of the
effect size (H’j = pδ/100σ), this equation can be
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used for calculating P(WH’j∩C) and then P(WH’j|C).

Conditional Confidence Interval Power and Sta-
tistical Test Power P(S∩WE|C).
Furthermore, by including in equation 2.4 (Ap-
pendix 2) the condition of obtaining a statistical-
ly significant Student’s t-test result (see Appendix
1), it is possible to obtain the joint probability of
a statistically significant result (S), of a standardized
sample CI half-width ≤ than EH (WE), and of co-
verage (C), say P(S∩WE∩C), that, divided by the
confidence coefficient (1 - α), gives P(S∩WE|C).
P(S∩WE∩C) is obtained, owing to their inde-
pendence, by the product of a central χ2 distribu-
tion [fx2(x2)] and a standardized Gaussian distri-
bution [fZ(z)] according to equation 3.1 shown in
Appendix 3:

Sample Size calculation to obtain satisfactory
values of P(S∩WE|C).
Assuming that EH, given a power-based sample
size for a test power ≥ 0.80, is satisfactory
enough for the precision needs of the study
(otherwise greater power values of the statistical
test allow obtaining increasingly narrower EH va-
lues), the starting power-based sample size (n0) is
iteratively increased until P(S∩WE|C) reaches a
satisfactory enough value. It has to stress that as
an alternative precision threshold the researcher
can choose an Hj value or also a percentage of the
effect size.
Defining n1 a new value of the increased sample
size, it is possible to calculate the corresponding
degrees of freedom ν1, the increased λ1 (δ/σ√k1

with k1 = 1/n1 for the one-sample test, or 2/n1 for
the two-sample test), and the (1-α/2) quantile of
a central t distribution with n1 degrees of freedom
(t1−α/2,ν1) at the two-sided significance level (α).
Then, the increased values of P(S∩WE∩C) can be
obtained by equation 3.1 (Appendix 3) after ha-
ving appropriately changed the upper and lower
integration limits as follows:

where: c1 = t1−α/2,ν1 /√ν1, and x1 = (t1−α/2,ν0 /t1−α/2,ν1)
2

(n1·ν1/n0), being t1−α/2,ν0 the (1-α/2) quantile of a
central t distribution with ν0 degrees of freedom
from the starting power-based sample size (n0).
Thereafter, P(S∩WE|C) is obtained by dividing
P(S∩WE∩C) by the confidence coefficient (1-α).

RESULTS

The power-based sample sizes (n0) for demon-
strating an effect size (δ/σ) of 0.10(0.025)
0.20(0.05) 0.7(0.1) 1.3 at a test power (1-β) of
≥0.80 and significance level (α) of 0.05 (two-si-
ded) have been calculated for the one-sample and
the two-sample Student’s t-test.
For the one-sample t-test, Table 1 shows the ef-
fect size in the first column, the power-based sam-
ple size (n0) in the second, the standardized ex-
pected width (EH) in the third and the values of
P(WE|C) and of P(S∩WE|C) given n0 in the
fourth and fifth column, respectively. The next three
columns show precision thresholds (Hj) under
which sample standardized CI half-widths are ex-
pected to be less at P(WHj|C) values of 0.80, 0.90,
and 0.99. Finally the last five columns show the
sample sizes necessary for obtaining P(S∩WE|C)
values at least of 0.70, 0.75, 0.80, 0.85, and 0.90.
With the following example of the proposed
sample size calculation approach, the expected va-
lues are given together with the results (between
brackets and in italic) from a simulation study on
10,000 of one sample. The parameters of the si-
mulation study have been chosen accordingly to
the effect size of 0.6, and the power-based calcu-
lated sample size is of 24 patients for a test power
of 0.80 and a significance level of 0.05 (two-si-
ded).
Hermansen et al. (25) compared the acute bron-
chodilatory effect of the long-acting β2-agonist for-
moterol against the short-acting β2-agonist ter-
butaline during exercise-induced bronchocon-
striction in children with persistent asthma ac-
cording to a cross-over design; they enrolled in the
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study 24 patients since “this sample size, based on
their experience from previous studies, would give
a 80% chance to detect a difference of 8% (cor-
responding to approximately 0.2 L) in the Forced
Expiratory Volume in one second (FEV1) at a two-
sided test at a 5% significance level”. This diffe-
rence is consistent with an effect size of about 0.6,
considering the variability of the FEV1 of about
0.33 shown in their Tables 1 and 2 and from their
references. In order to plan a cross-over clinical
trial for comparing the effect of a new broncho-
dilator against the standard drug, the power-based
calculated sample size based on these estimates
(effect size: δ/σ = 0.6) is 24 for a power of 0.80
at a one-sample Student’s t-test with α = 0.05 (two-
sided). Therefore, EH is 0.4223, P(WE|C) is

0.5261 (0.5083) and P(S∩WE|C) is 0.4691
(0.4323).
Table 1 shows that a sample size of 34 gives a
P(S∩WE|C) of 0.90 (0.9044); however, a sample
size of 31 can also be a sensible choice since
P(S∩WE|C) is at least 0.80 (0.8287).
In addition, it is possible to see that a P(WHj|C) va-
lue of 0.80 (0.7979) is obtained if a precision thre-
shold of 0.4712 is chosen instead of the EH (equal
to 0.4223); furthermore, values of 0.90 or 0.99 are
given by the thresholds of 0.5000 (0.9028) or of
0.5695 (0.9899), respectively. More interestingly,
selecting one of these thresholds, a P(S∩WHj|C) va-
lue of 0.80 is obtained with n = 27 for 0.4712
(0.8074), n = 26 for 0.5000 (0.8320) and, finally,
with just the starting sample size of 24 for 0.5695

Table 1. One sample: power-based sample sizes (1-β ≥ 0.80 and α = 0.05, two-sided) for some effect size values (δ/σ), to-
gether with their corresponding standardized half-width (EH), P(WE |C) and P(S∩WE |C); three thresholds (Hj) of the half-
width CI under which the sample half-widths are expected to be lower at conditional probabilities [P(WHj |C)] of 0.80, 0.90
and 0.99 and five sample sizes for [P(S∩WE |C)] of 0.70, 0.75, 0.80, 0.85, and 0.90.
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(0.8130)(data not shown). Otherwise, if the rese-
archer prefers to choose a precision threshold as a
percentage of the effect size, as it seems sensible
for having a more direct relationship between the
precision and the effect size, it is possible to obtain
(SAS program available from the author) that, for
example, a P(S∩WH’j|C) value of 0.80 is given by
31 subjects (0.8082) if the threshold is the 75% of
the effect size (0.45) and by 26 subjects (0.7999)
if the threshold is the 80% (0.48) (data not shown).
The sample sizes needed to obtain a P(S∩WE|C)
of 0.80 are, obviously, more than those needed to
obtain only a statistical test power of 0.80, but the
increases are less than 10% for an effect size 
≤ 0.125, less than 20% up to an effect size of 0.350,
less than 30% up to an effect size of 0.650, and

less than 40% for an effect size up to 1.3 for which
the increase is only of a few subjects.
Table 2 shows the results of the proposed method
for the two-sample Student’s t-test; the sample si-
zes are for each group.
With the following example of the proposed
sample size calculation approach the expected va-
lues are given together with the results (between
brackets and in italic) from a simulation study on
10,000 trials with two samples. The parameters of
the simulation study have been chosen accordin-
gly to an effect size of 0.5 (particularly, µ1 = 6.0,
µ2 = 8.5, σ1=σ2=5), and the power-based calculated
sample size is of 64 patients in each treatment
group for a test power of 0.80 and a significance
level of 0.05 (two-sided).
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Kraus et al. (26) reported the results of a paral-
lel controlled clinical trial (STRRIDE) aimed to
investigate the effects of the amount and intensity
of the physical exercise on the serum lipoproteins
profile in patients with mild-to-moderate dysli-
pidemia. Four groups were compared: control,
low-amount and moderate intensity, low amount
and high intensity, and, finally, high amount and
high intensity exercise for a six months period.
A statistical significant difference against the con-
trol group has been found only for the group of
patients randomized to the high amount and high
intensity exercise; particularly, this group showed
a mean HDL cholesterol concentration increase
of 4.3 mg/dl against a decrease of 0.6 mg/dl in the
control one (Figure 2 on page 1489) with a dif-
ference of 6.5 mg/dl (48.6 – 42.1 mg/dl) betwe-
en these two groups at the end of the six months
study. Furthermore, from the standard error va-
lues shown in Table 2 (page 1487) for the HDL
base and end of study, respectively, it is strai-
ghtforward to obtain a value of about 13 mg/dl as
an estimate of the phenomenon variability of the
HDL serum concentration. Suppose that a rese-
archer wants to confirm these results on a diffe-
rent kind of patients or in a different country (brid-
ging study); so he/she designs a new study for
comparing no physical exercise (control group)
to a high amount and high intensity exercise ba-
sed on these estimates, since the difference of the
HDL cholesterol serum concentration can be sen-
sibly chosen as the primary objective of the cli-
nical trial. For δ = 6.5 mg/dl and σ = 13 mg/dl,
giving an effect size (δ/σ) of 0.5, the power-ba-
sed calculated sample size is 64 for having a po-
wer of at least 0.80 at a two-sample Student’s t-
test with α = 0.05 (two-sided). Therefore, EH is
0.3498, P(WE|C) is 0.5108 (0.5083) and
P(S∩WE|C) is 0.4339 (0.4324).
Table 2 also shows that, with a 17.2% sample size
increase (75 subjects in each group) P(S∩WE|C)
is at least 0.80 (0.8254); a greater increase of 28.1%
(82 subjects in each group) leads to the very high
value of 0.90 (0.9088) of obtaining both of the re-
levant research aims given by the P(S∩WE|C) fun-
ction.
In addition, it is worthwhile to stress that a pre-
cision threshold of 0.3679 instead of the EH (equal
to 0.3498) gives a P(WHj|C) value of 0.80 (0.7971);

furthermore, thresholds of 0.3778 and 0.4016 give
values of 0.90 (0.8965) and 0.99 (0.9909), re-
spectively. More interestingly, selecting one of the-
se thresholds a P(S∩WHj|C) of at least 0.80 is ob-
tained with n = 70 for 0.3679 (0.8204), and with
n = 67 for 0.3778 (0.8049) and, finally, with just
the starting sample size of 64 for 0.4016 for which
P(S∩WHj|C) is 0.8103 (0.8096) (data not shown).
Otherwise, for a precision threshold in the terms
of a percentage of the effect size of 75% equal to
0.3750 and of 80% equal to 0.4000, for example,
a P(S∩WH’j|C) value of 0.80 is obtained with 68
subjects (0.8158) and 64 (0.8084), respectively
(data not shown).
Of course, also in the case of the two-sample Stu-
dent’s t-test, the sample sizes necessary for a
P(S∩WE|C) of 0.80 are more than that needed for
obtaining only a test power of 0.80, but less than
10% up to an effect size of 0.250, less than 20%
up to an effect size of 0.70, and less than 30% for
effect size values of up to 1.3 (at which the absolute
increase is only of a few units).
Considering the sample sizes shown in Table 2 of
Jiroutek et al. (16), a probability value of 0.80
(0.90) for a required standardized width of 0.5 and
for demonstrating an effect size of 0.5, given va-
lidity, is obtained with 134 (138) subjects in each
group, against 75 (82) subjects from the proposed
procedure. So, in this case, there is a 28.6% pre-
cision reduction (about 0.7 against 0.5), but the
sample size increase is only of 17.2% (28.1%)
against the 109.4% (115.6%) shown by Jiroutek
et al. (16).

DISCUSSION

The unsatisfactory aspects of the two distinct sam-
ple size calculation procedures for demonstrating
and estimating an effect can be overcome if they
are appropriately combined bearing in mind that
the power-based approach is more important to re-
searchers who are mainly interested in demon-
strating a clinically relevant effect and, in addition,
it is the recommended approach by the standar-
dized guidelines (17) according to ethical princi-
ples.
It is worth underlining that the starting power-
based sample size can provide researchers with
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very useful information that should be taken
into account when planning a study. In particular:
i) the achievable level of precision (EH); ii) the un-
conditional or the conditional probability of ob-
taining a standardized CI half-width of less than
EH [P(WE) or P(WE|C)] which is however always
unsatisfactorily about 0.50 regardless of the cho-
sen power or the study; iii) some other conditio-
nal probability [P(WHj|C)] values of obtaining other
precision levels (Hj) which, more than EH (lower
precision levels), can be obtained at probability va-
lues of more than P(WE|C); and iv) the most re-
levant probability of demonstrating a clinically re-
levant hypothesis and obtaining the precision le-
vel of the study P(S∩WE|C), which is even less
than the unsatisfactory P(WE|C).
Consequently, the starting power-based sample size
can be increased for obtaining satisfactory values
of P(WE|C) and, above all, of P(S∩WE|C). 
Particularly, starting from a test power of 0.80, the
researcher can accept EH as a suitable precision
threshold or select one of the Hj or a percentage
of the effect size (H’j); however, it has to stress that
both have to be >EH since, otherwise, more sub-
jects have to be enrolled into the trial only on the
basis of the required precision of the effect esti-
mate, not consistently with the regulatory and ethi-
cal requirements focused on the necessary sam-
ple size for demonstrating a clinical relevant dif-
ference. However, if EH is too higher for the pre-
cision needs of the study, a sample size calcula-
ted for a greater test power (0.85 or 0.90) allows
obtaining lower EH or Hj or H’j as suitable values
of the precision threshold. 
The sample size calculation method for obtaining
satisfactory P(S∩WE|C) values concentrates on the
main interest of researchers; this function plays a
pivotal role insofar as it links statistical testing and
estimating procedures by combining the two po-
wers of inferential statistical procedures, and gi-
ves the probability of achieving the two aims of
demonstrating a relevant difference and estimating
it with satisfactory precision. 
The results of the simulation study for the one sam-
ple and the two samples case are very near to their
expected values (lower than 1%); however, in some
cases, a difference of about 2-3% is due to the fact
that the Tables show values of P(S∩WE|C) and
P(WHj|C) at least equal to selected probability va-

lues, and, finally, it has to consider that for the
shown examples at each one or two unities increase
of the sample size P(S∩WE|C) (and also
P(S∩WHj|C)) increases of 0.05. Particularly, from
the Table 1 it can be seen that the expected value
of P(S∩WE|C) is at least 0.75 for n1 = 30, at le-
ast 0.80 for n1 = 31, and at least 0.85 for n1 = 32;
so, for example, it is absolutely acceptable the re-
sult of 0.8287 instead of at least 0.80 from the si-
mulation study with n1 = 31.
It is also worth considering that this procedure can
be used even if researchers do not have a previous
appropriate estimate of the variability of the phe-
nomenon, and therefore they have to rely on the
effect size.
The increase in the usual power-based sample size
required for a P(S∩WE|C) value of 0.80 is gene-
rally acceptable and counterbalanced by the grea-
ter validity of the planned research.
SAS® sample size calculation programs are avai-
lable from the author.

APPENDIX 1

For a unilateral alternative hypothesis HA: µA - µ0

= δ or HA: µ1 - µ2 = δ with δ >0, the event rejec-
tion of the null hypothesis [S given by t’ν ≥ t1−α/2,ν,
being t’ν the sample test statistic, and t1−α/2,ν the 1-
α/2 quantile of a central t distribution with ν de-
grees of freedom equal to r(n0-1) with r = 1 or 2
for the one or the two samples test, respectively]
is obtained at a power value given by P(S) = P [t’ν
(λ) ≥ t1−α/2,ν] ≥ 1 – β where t’ν (λ) is the quantile
of a non-central t distribution with ν degrees of
freedom and non-centrality parameter λ = δ/σ√k
with k = r/n0, being n0 the sample size in the one
sample or in each sample. Since t’ν (λ) =
(Z+l)/(Z√⎯ν), being Z and X independent random
variables distributed as a standard normal [N(0,1)]
and a χ with n degrees of freedom, respectively,
we have: 

putting c = t1−α/2,ν /√ν, leads, according to Johnson
et al (27), to calculate the test power as:
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where fX(x) is a χ density function and fZ(z) is a
standard normal density function.
By changing from the χ variable (X) to a χ2 va-
riable (X2), and, accordingly, the integration limits,
integrating before for x2 and after for z, and then
putting Fx2 (x2) = ∫0

x2 fx2 (t) as the cumulative cen-
tral χ2 distribution function, we obtain:

(1.1)

The inner integral can be easily obtained by a sta-
tistical software (22: function Probchi, for
example) and, since the standard normal distri-
bution remains finite over its range, the double
integral can be resolved by numerical integra-
tion by using, for example, the QUAD function
of SAS®/IML (28) without problems of overflow
in the calculation. The test power function rea-
ches the required value (1-β = 0.80, at least) at
a sample size value, say n0, giving k0 = r/n0 and
ν0 = r(n0 - 1).

APPENDIX 2

Let’s define WE the event that the standardized
sample half-width (Wx) is ≤ EH; since Wz = t1−

α/2,νs√⎯k/σ and EH = t1−α/2,ν√⎯k, we have that:

then, by multiplying both sides by √ν, we obtain:

(2.1)

where X = √⎯ν, s/σ is a chi distributed variable with
ν degrees of freedom (χν) and xE = (ν EH2)/
(t1−α/2,ν√⎯k)2 is, obviously, equal to ν.
By defining the event coverage that the CI inclu-
des the parameter δ, estimated by δ̂, as:

, by rear-
ranging and dividing for σ√k, we have:

Since ,

by multiplying the numerator and denominator of
the two extreme terms by √ν, this expression be-
comes:

(2.2)

X = √⎯ν, s/σ is a chi distributed variable with ν de-
grees of freedom (χν) and c = t1-a/2,ν /√ν. 
Thereafter, the joint event WE∩C, expressed in the
terms of a chi (X) and a standard normal (Z) di-
stributed variables, is:

WE∩C = [(0 ≤ X ≤ √xE) ∩ (-c X ≤ Z ≤ c X)]
or, equivalently,

So, by changing from a chi variable (X) to a chi-
squared variable (X2), its probability is given by:

(2.3)

where fX2(t) is a chi-squared density function and
fZ(z) is a standard normal density function.
By solving the double integral for x2 before, and
then for z, and putting Fx2 (x2) = ∫0

x2 fx2 (t) dt as the
cumulative central χ2 distribution function, we ob-
tain, according to equation (2) of Grieve (13), that:

(2.4)

since c = t1−α/2,ν /√ν, the upper integration limit is
equal to t1−α/2,ν. The inner integral can be easily ob-
tained by a statistical software (the function
Probchi of SAS® (22), for example) and, since the
standard normal distribution remains finite over
its range, the double integral can be resolved by
numerical integration (QUAD function of
SAS®/IML (28), for example) without problems

Bruno Mario Cesana et al.

76 BIOMEDICAL STATISTICS AND CLINICAL EPIDEMIOLOGY 2010; 4 (2): 67-78

0126 1 A new_Cesana 2:-  11-05-2011  9:45  Pagina 76



of overflow in the calculation. Finally, since
P(C) = 1- a, from equation (2.4) it is straightfor-
ward to obtain P(WE |C) = P(WE∩C) / P(C) or
P(WE∩C) / (1- α). 
Equation 2.4 allows calculating relevant values of
the unconditional probability [P(WHj∩C), say J =
0.70, 0.75,…, 0.95, 0.99] and then of the condi-
tional one P(WH|C) by increasing the upper inte-
gration limit (say, xH > xE); thereafter the corre-
sponding precision thresholds (Hj> EH) can be cal-
culated  as: Hj = t1−α/2,ν √⎯k xH / √⎯ν.
Furthermore, equation 2.4 allows calculating
P(WH’j∩C) and then P(WH’j|C) by putting the xH

= (ν H’2)/(t1−α/2,ν √⎯k)2, being H’j = pδ/100σ.

APPENDIX 3

The joint event S∩WE∩C, expressed in the terms
of Z and X, being Z and X independent random
variables distributed as a standard normal [N(0,1)]
and a chi with n degrees of freedom, is:

or, equivalently:

Considering the lower term of the second inter-
section: max[-cX; -λ+cX], -cX ≥ -λ +cX is ob-
tained for X≤λ/2c; furthermore, since X ≤ √xE, we
have to take into account two cases of which the
first is:

since t1−α/2,ν √⎯k = EH.
So, in this first case with δ/σ ≤ 2EH, max{-cX; 
-λ + cX} = -cX for 0 ≤ X ≤ λ / 2c and otherwise,
for λ/ 2c ≤ X ≤ √ xE, max{-cX; -λ + cX} = -λ + cX.
The joint event S∩WE∩C, expressed in the terms
of X and Z, being X and Z independent random
variables distributed as a chi with ν degrees of free-
dom and a standard normal [N(0,1)], is:

Then, by solving the double integral for x2 and then
for z, and putting FX2 (x2) = ∫0

x2 fx2 (t) dt as the cu-
mulative central χ2 distribution function, we obtain:

(3.1)

where the inner integral can be easily obtained, for
example, by the SAS® (22) function Probchi; the
double integral can be resolved by numerical in-
tegration by QUAD function of SAS®/IML (28)
without problems of overflow in the calculation.
Since c = t1−α/2,ν /√ν, c√xE is equal to t1−α/2,ν .
The second case, that, however, does not occur in
this paper since δ/σ is always < 2EH, is given by:

since t1−α/2,ν √⎯k = EH.
So, max{-cX; -λ + cX} = -cX for 0 ≤ X ≤ √ xE.
The joint event S∩WE∩C, expressed in the terms
of X and Z, being X and Z independent random
variables distributed as a chi with ν degrees of free-
dom and a standard normal [N(0,1)], is:

equal to (WE∩C), and its probability is obtained
by equation 2.4 in Appendix 2.
Equation 3.1 (and 2.4) allows obtaining
P(S∩WE|C) value at increasing sample size, ap-
propriately changing the integration limits.
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