
Introduction

Confounding is widely recognized as one of the prin-
cipal problems faced by researchers conducting ob-
servational studies. When unmeasured confounders are
present, causal effects will generally not be estimated
in an unbiased manner without making assumptions that
cannot be identified from the study data alone. Recently,
a new framework for sensitivity analysis based on mo-
deling bias due to confounding was proposed (1-8). This
framework includes a method that applies marginal
structural models (MSMs) (1, 2, 9).
The MSM is a tool used to estimate the inverse-pro-
bability-of-treatment-weighted (IPTW) estimator (1),

which is a natural extension of standardization, using
a regression analysis. The parameters are estimated by
a weighted regression analysis (10) with the weight de-
fined as the inverse of the propensity score (11, 12) for
the exposed individuals and the inverse of 1 minus the
propensity score for the unexposed individuals. Here,
the propensity score is the probability of exposure, gi-
ven the measured baseline variables.
While the method of sensitivity analysis assuming
MSMs can be applied to effect measures with the to-
tal group as the standard population, such methods have
not been developed for effect measures with the exposed
and unexposed groups as the standard population. The-
refore, we propose methods of sensitivity analyses for
the latter groups.
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Summary
Objectives. Unmeasured confounding commonly poses a problem in observational studies. Although sensitivity analysis based
on marginal structural models (MSMs) can now be used, its use is limited to cases in which the standard population is the
total group. Herein, we propose methods for sensitivity analysis based on MSMs with the exposed and unexposed groups
as the standard population.
Methods. We derived the methods for risk differences and risk ratios using the potential outcome model. The methods de-
veloped are applied to a classic cohort study.
Results. Sensitivity analyses using the exposed and unexposed groups as the standard population are simpler to formulate
than those using the total group. Through an application to data from an observational study, this paper demonstrates that
our methods of sensitivity analysis can be conducted for both the risk differences and risk ratios in observational studies.
Conclusions. The proposed methods will help researchers to provide a realistic picture of the potential impact of unmea-
sured confounding.
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Methods

Notation

We use X as an exposure indicator, and assume the now-
standard deterministic potential outcome model, in
which Y

X=1 and YX=0 are the potential outcome indica-
tors under X = 1 and X = 0, respectively (13, 14), a mo-
del used in several textbooks (15-17). The potential risks
E(Y

X=1) = P(YX=1 = 1) and E(YX=0) = P(YX=0 = 1) are then
the expectations of Y, if everyone in the study popu-
lation is exposed or given X = 1, and if everyone is not
exposed or given X = 0, respectively. Causal effects with
the total group as the standard population are contrasts
between these two expectations. Those with the exposed
group as the standard population are contrasts betwe-
en E(Y

X=1 | X = 1) and E(Y
X=0 | X = 1), and those with

the unexposed group as the standard population are con-
trasts between E(Y

X=1 | X = 0) and E(Y
X=0 | X = 0). Note

that the observed outcome Y equals the potential out-
come Y

X=x
whenever X = x. Hence,

E(Y | X = x) = E(Y
X=x | X = x).

Risk Differences

Following Brumback et al. (5), for formulating the bias
due to unmeasured confounding for the risk differen-
ces (RDs), we define the bias factors αRD and βRD as

αRD � E(Y
X=1 | X = 1, Z = z) – E(Y

X=1 | X = 0, Z = z) [1]

and

βRD � E(YX=0 | X = 1, Z = z) – E(YX=0 | X = 0, Z = z) [2]

where Z is the vector of all measured confounders, and
αRD is the difference between the expected outcome of
those actually exposed and the expected outcome of tho-
se unexposed had they been exposed, among the subgroup
of subjects with Z = z. Similarly, βRD is the difference bet-
ween the expected outcome of exposure under non-ex-
posure and the expected outcome of those actually unex-
posed among the subgroup of subjects with Z = z.
When αRD > 0 and βRD > 0,

E(YX=x | X = 1, Z = z) > E(YX=x | X = 0, Z = z),

which means that the subjects in the exposed group tend

to be sicker than those in the unexposed group. Con-
versely, when αRD < 0 and βRD < 0,

E(YX=x | X = 1, Z = z) < E(YX=x | X = 0, Z = z),

which means that the subjects in the unexposed group
tend to be sicker than those in the exposed group. No
confounding occurs when αRD = βRD = 0.

First, we discuss a sensitivity analysis for the causal RD
with the exposed group as the standard population,
RDX=1. To conduct the sensitivity analysis, YβRD is in-
troduced as bias-corrected versions of Y:

YβRD = Y + βRD.

Substituting equation [2] into this equation gives

Therefore, RDX=1 is transformed as

where i = 1, …, N denotes a subject. Then, once P(X
= x | Z = z

i) has been calculated, a sensitivity analysis
for RDX=1 is conducted using the IPTW method,

, [3]

with YβRD for some fixed values of βRD, where N1 = N
× P(X = 1) denotes the number of subjects in the ex-
posed group.
The RDX=1 can be estimated using a linear MSM, i.e.,
the weighted linear regression analysis (10) with 1 for
the subjects taking X = 1 and P(X = 1 | Z = zi

) / P(X =
0 | Z = zi) for the subjects taking X = 0 as the weight,
where Y is the dependent variable and X is the inde-
pendent variable. The details are found elsewhere (18).
For a sensitivity analysis, YβRD is used for the subjects
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with X = 0 for some fixed values of βRD, and Y itself
is used for those with X = 1.
Next, we discuss a sensitivity analysis for the causal
RD with the unexposed group as the standard popu-
lation, RD

X=0. We introduce
Y αRD = Y – αRD

as a bias-corrected version of Y. Similar to the case with
the exposed group as the standard population, substi-
tution of equation [1] into this equation gives

Then, RD
X=0 is transformed as

.

Once P(X = x|Z = zi) has been calculated, a sensitivi-
ty analysis for RD

X=0 is conducted by the IPTW me-
thod,

, [4]

with YαRD for some fixed values of αRD, where N0 = N
× P(X = 0) denotes the number of subjects in the unex-
posed group. In the context of a linear MSM, for the
subjects with X = 1, P(X = 0 | Z = z

i) / P(X = 1 | Z = zi)
is used as the weight and YαRD is used for some fixed
values of αRD. For the subjects with X = 0, the weight
is 1 and Y itself is used.
Note that

YαRD = Y – αRDP(X = 0 | Z = z)

is used for the subjects with X = 1 and

YβRD = Y + βRDP(X = 1 | Z = z)

is used for subjects with X = 0 when the standard po-
pulation is the total group. In the context of a linear
MSM, the weights are 1 / P(X = 1 | Z = z

i) for X = 1 and
1 / P(X = 0 | Z = z

i) for X = 0.

Risk Ratios
We can use YαRD and YβRD for sensitivity analyses of the
risk ratios (RRs). However, their use is troublesome in
the context of MSMs, because they give negative va-
lues for some subjects. For example, under αRD = 0.05,
the values of YαRD for subjects with X = 1 and Y = 0 are

YαRD = 0 – 0.05 < 0.

Poisson MSMs, i.e., the weighted Poisson regression
analyses, are used to yield the adjusted RRs. However,
when the outcome variables include negative values,
some commercial programs such as the SAS procedure
PROC GENMOD (19) do not yield the estimates of pa-
rameters. Therefore, we introduce bias factors to for-
mulate the bias due to unmeasured confounding for
RRs.
Following Chiba (8), we define the bias factors αRR and
βRR as

αRR � E(Y
X=1 | X = 1, Z = z) / E(Y

X=1 | X = 0, Z = z)

and

βRR � E(YX=0 | X = 1, Z = z) / E(YX=0 | X = 0, Z = z)

instead of equations [1] and [2]. They can be interpreted
in a manner similar to αRD and βRD, and the direction
of bias is determined by whether αRR and βRR are grea-
ter or less than 1.
First, we discuss a sensitivity analysis of

RRX=1 = E(YX=1 | X = 1) / E(YX=0 | X = 1),

which is the causal RR using the exposed group as the
standard population. We present the following formu-
la for the bias-corrected version of Y:

YβRR = βRRY.

Then, it is easily verified that

E(YβRR | X = 0, Z = z) = E(YX=0 | X = 1, Z = z).

By the similar transformation as RDX=1, a sensitivity ana-
lysis of RRX=1 is conducted using the ratio version of
equation [3],

,
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with YβRR for some fixed values of βRR, once P(X = x|Z
= z

i) has been calculated. In the context of MSMs, the
RR

X=1 can be estimated using a Poisson MSM (cf. 18),
where the weights are the same as those used to esti-
mate RD

X=1. For a sensitivity analysis, YβRR is used for
the subjects with X = 0 for some fixed values of βRR,
and Y itself is used for those with X = 1.
Next, for a sensitivity analysis of

RR
X=0 = E(YX=1 | X = 0) / E(YX=0 | X = 0),

which is the causal RR with the unexposed group as
the standard population, we introduce

YαRR = Y / αRR

as the bias-corrected version of Y. Then, 

E(YαRR | X = 1, Z = z) = E(YX=1 | X = 0, Z = z),

and a sensitivity analysis of RR
X=0 is conducted using

the ratio version of equation [4],

with YαRR for some fixed values of αRR, once P(X = x
| Z = z

i) has been calculated. In the context of MSMs,
a sensitivity analysis of RR

X=0 can be conducted using
a Poisson MSM, where YαRR is used for the subjects with
X = 1 for some fixed values of αRR, and Y itself is used
for those with X = 0.

Note that

YαRR = {P(X = 0 | Z = z
i
) / αRR + P(X = 1 | Z = z

i
)}Y

is used for the subjects with X = 1 and

YβRR = {P(X = 0 | Z = zi) + βRRP(X = 1 | Z = zi)}Y

is used for those with X = 0 when the standard popu-
lation is the total group. In the context of a Poisson
MSM, the weights are 1 / P(X = 1 | Z = z

i
) for X = 1 and

1 / P(X = 0 | Z = z
i) for X = 0.

Results

Table 1 presents data from an 8.5-year follow up in a

classic observational cohort study, the Western Colla-
borative Group Study (20), which examined the effect
of behavior patterns on coronary heart disease (CHD).
Type-A behavior was characterized by enhanced ag-
gressiveness, ambitiousness, competitive drive, and a
chronic sense of time urgency; type-B behavior was the
absence of these behavioral characteristics. We used data
from this study as they were presented in a textbook
(21).
The crude RD and RR were 6.15% (95% confidence
interval [CI]: 4.26%, 8.05%) and 2.22 (95% CI: 1.72,
2.87), respectively. To estimate the adjusted RD and RR
under the assumption of no unmeasured confounder,
we chose three variables as confounders: age, body mass
index (weight(kg) / height(m)2) (these two are conti-
nuous variables), and smoking (this is a dichotomous
variable: smoker or nonsmoker). The propensity sco-
re for each subject was estimated using the logistic mo-
del, giving the estimated weights. Linear MSMs yiel-
ded RD

X=1 = 5.50% (95% CI: 3.51%, 7.49%) and RD
X=0

= 4.97% (95% CI: 3.17%, 6.77%), and Poisson MSMs
yielded RR

X=1 = 1.96 (95% CI: 1.52, 2.55) and RR
X=0

= 1.98 (95% CI: 1.53, 2.57), where the robust varian-
ce was applied. Calculations were performed using the
SAS procedure PROC GENMOD (19).
In addition to the above measured confounders, ho-
mocysteine, diabetes, stress, and family history are
known risk factors for CHD. Since these factors may
be related to behavior patterns, they should be consi-
dered as confounders. However, we cannot perform the
analysis adjusting for these factors because they are un-
measured confounders. Therefore, we need to conduct
a sensitivity analysis for unmeasured confounding.
Before conducting a sensitivity analysis, we decided
on reasonable ranges of αRD, βRD, αRR and βRR. To esta-
blish the ranges, we utilized the effects of a strong risk
factor, C, on the outcome as in Chiba (8). In many ca-
ses, the values of the bias factors may be smaller than
those of the effect measures of a strong risk factor. Then,
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Table 1. Data from the Western Collaborative Group Study
(20): Coronary heart disease (CHD) incidence by behavior
pattern.

Behavior CHD No CHD Total

Type-A 178 1411 1589

Type-B 79 1486 1565
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if C is dichotomous, ranges of αRD and βRD are –RDC0

≤ αRD ≤ RDC0, where RDC0 = E(Y | X = 0, C = 1) – E(Y
| X = 0, C = 0) > 0, and –RDC1 ≤ βRD ≤RDC1, where RDC1

= E(Y | X = 1, C = 1) – E(Y | X = 1, C = 0) > 0. Like-
wise, ranges of αRR and βRR are 1 / RRC0 ≤ αRR ≤ RRC0,
where RRC0 = E(Y | X = 0, C = 1) / E(Y | X = 0, C = 0)
> 1, and 1 / RRC1 ≤ βRR ≤ RRC1, where RRC1 = E(Y | X
= 1, C = 1) / E(Y | X = 1, C = 0) > 1. When we chose
smoking as a strong risk factor, RDC0, RDC1, RRC0 and
RRC1 were calculated to be 4.09%, 4.49%, 2.27, and
1.50, respectively.
The results of sensitivity analyses of RDs are shown
in Figure 1, and those of RRs are shown in Figure 2.
These figures provide realistic pictures of the poten-
tial impact of unmeasured confounding, and show that
the effect measures, except for RR

X=0, are greater than
1, i.e., the risk of CHD increases with type-A behavior,
in the defined ranges.

Discussion

We have proposed methods of sensitivity analysis for
unmeasured confounding assuming MSMs when the
standard population is the exposed or unexposed
group. In some situations, the causal effects with the
exposed or unexposed group as the standard popula-
tion may be more important than the causal effects with
the total group as the standard population. For exam-
ple, the exposed group may be employed as the stan-
dard population when we evaluate the effect of occu-
pational exposure, and the unexposed group may be em-
ployed for evaluation of new health promotion pro-
grams. The proposed methods are useful in such si-
tuations.
The proposed methods parameterize the bias due to un-
measured confounding rather than unmeasured con-
founders themselves. Therefore, an advantage of our

Sensitivity analyses for unmeasured confounding assuming marginal structural models under various standard populations
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Figure 1. Sensitivity analyses of the risk differences in the
Western Collaborative Group Study (20); the solid line in-
dicates the estimated risk difference and the broken lines
represent the 95% confidence interval: (a) RDX=1 and (b)
RDX=0.

Figure 2. Sensitivity analyses of the risk ratios in the West-
ern Collaborative Group Study (20); the solid line indicates
the estimated risk ratio and the broken lines represent the
95% confidence interval: (a) RRX=1 and (b) RRX=0.
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methods is that we can treat multiple confounders,
which may include several types of variable, and un-
known unmeasured confounders, in a simple and
straightforward manner. In parameterizing unmeasu-
red confounders themselves, it may be difficult to con-
duct a sensitivity analysis using several parameters. Ho-
wever, if one or a few unmeasured confounders exist
and we know their distributions, such methods as the
Monte-Carlo sensitivity analysis (MCSA; 3, 6, 7), may
be more helpful. The bias parameter used in the
MCSA is the same as the bias factors used here. The-
refore, we can conduct the MCSA by applying MSMs,
in which the measured confounders are adjusted by the
MSMs.
Performing a sensitivity analysis using the methods pro-
posed here can help researchers explore the potential
impact of unmeasured confounding. We recommend
performing a sensitivity analysis to evaluate the in-
fluence of unmeasured confounders on study results.
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