
Introduction

Considerable resources and effective tools are in pla-
ce to control malaria in the sub-Saharan Africa region.
These tools include insecticide treated nets, indoor re-
sidual spraying, effective antimalarials with artemisia
combination therapy. The impact of such interventions
and how it may have modified the burden of the disease
is crucial for national malaria control programmes (1,
2). Demand for data has increased for monitoring and
evaluation, to characterize the epidemiological profi-
le of the disease, thus guiding control efforts (3, 4). For
those involved in policy development and implemen-
tation, knowledge of geographical distribution of the

disease burden has become critical because progress
can be monitored and the impact of control program-
mes evaluated through maps, and spatial inequalities
in the disease burden highlighted for action and further
analysis (4, 5, 6).
The study of the geographical distribution of mala-
ria risk has generated significant interest in recent ye-
ars (7, 8). Several reasons spurred this growth. First,
malaria is a disease characterized by spatial clustering
because of the nature of its transmission (8). In fact,
geographical epidemiology of the disease has long
been recognised (9). Second, advances in spatial me-
thodology and developments in geographical infor-
mation system have seen immediate applications in
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Summary
Background/Objectives. Considerable resources and effective tools are in place to control malaria in the sub-Saharan Afri-
ca region. The impact of interventions and how it may modify the burden of the disease is critical for national malaria con-
trol programmes. In the face of limited resources, quantifying the geographical patterns of the malaria risk is crucial for
increased understanding the epidemiology of disease and for spatial targeting of interventions. This study developed di-
sease maps, based on health facility incidence data and used spatial models, to describe geographical variation of malaria
risk.
Materials and Methods. We used malaria case data of children under the age of 5 years, collected at sub-district level in nor-
thern Malawi. We applied spatial techniques, accounting for heterogeneity and overdispersion in the data, to highlight are-
as of greatest need.
Results/Conclusion. The disease burden depicted a west-east gradient, with highest risk found on the eastern side of the re-
gion. This pattern suggests that people living along the lakeshore region are at highest risk. This study constitutes an important
first step for a detailed further study that would investigate risk factors related to the pattern observed in this study.
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malaria research. Third, there is now abundant sour-
ce of spatially referenced malaria data amenable to spa-
tial analysis. Recent leading examples in malaria di-
sease mapping include the mapping malaria risk in
Africa (MARA) project http://www.mara.org.za. and
Malaria Atlas Project (MAP) http://www.map.ox.
ac.uk..
This article developed spatial models to detect geo-
graphical variability in malaria risk in Malawi. Ma-
laria in Malawi, as in much of the sub-Saharan Afri-
ca region, is a historical public health problem. About
3 million new cases of malaria occur every year in
the country (10, 11). To assist towards meeting the
RBM goals (12), and faced with limited resources,
there is need to prioritise interventions to areas of hi-
ghest need. Very little, however, is known about the
disease risk distribution in Malawi. Studies that have
attempted to quantify geographical variability of ma-
laria risk include Craig et al. (7) and Kazembe et al.
(13, 14). Craig et al. (7) developed a theoretical cli-
matic suitability model, but this has important limi-
tations as it fails to provide insight into the tran-
smission of malaria in Malawi. There is need to de-
fine malaria risk based on malaria-specific indicator.
Kazembe et al. (13), using point-referenced preva-
lence of infection data, a malaria-specific indicator,
predicted and mapped malaria risk in the country. In
another study, using hospital register data, Kazem-
be et al. (14) studied spatial patterns of malaria-re-
lated hospital admissions and mortality in a single di-
strict in southern Malawi.
Here we extend similar models suitable for area-re-
ferenced routine malaria incidence data. Patient data
sourced from routine health management information
system (HMIS), when reasonably consistent and
complete in reporting might offer some indication of
the local trend in the malaria burden, and could pro-
vide supporting evidence of the impact of the inter-
ventions (4). This study, as in Kazembe et al. (14), used
incidence data of children under the age of 5 years, ag-
gregated at sub-district level in northern Malawi. Our
objective was to describe the geographical variation
in risk based on these data to guide malaria control ef-
forts, or documenting baseline risk level against
which future interventions can be assessed. A small area
level was chosen because it is more appropriate for lo-
cal health planning, monitoring and evaluation. A num-
ber of spatial techniques were used and compared to
detect the geographical variability in malaria morbi-
dity.

Materials and Methods

Study area

The northern region of Malawi is one of the 3 regions
of the country. It comprises of 5 districts, which is fur-
ther divided into 73 sub-districts or wards. Population
projections for 2006, based on the 1998 census, was ap-
proximately 1.3 million with under-five children con-
stituting 17% of the total population.

Morbidity data

Cases of malaria were sourced from health facility re-
gisters, between January 2004 to December 2006, ari-
sing from children under 5 years of age. These cases in-
cluded both clinically diagnosed and microscopically
confirmed cases, and were allocated to 73 sub-districts
for spatial analysis. Because of lack acquired immuni-
ty in children of under 5 years of age, the incidence of
malaria from this group is a better indicator of malaria
risk for an endemic area. In addition, the highest bur-
den of malaria, in such endemic areas, is inflicted on
children and studying geographical variability is war-
ranted for improved understanding of the disease bur-
den.
The corresponding population at risk estimates for each
sub-district were linearly interpolated from the 1998
census data available at the Malawi national statistics
office website http://nso.malawi.net.. These were used
to calculate crude and standardized incidence ratio (SIR)
for each area.

Statistical methods

Standardized incidence ratio
The SIR is a common approach to estimate the rela-
tive risk (RR) of the disease in an area. This is defi-
ned as, Oi

Ei
—, which is an improvement of the crude ra-

tio, Oi

Ni
—, where Oi is the observed number of cases, E

i

is expected number of cases and Ni is the population
at risk in each area i,i = 1,…,73. The expected num-
ber was calculated as Ei = Ni (∑Oi—∑Ni) (15). The stan-
dard error of SIR is . The working assum-
ption with SIR is that the observed counts are assu-
med independent and drawn from a Poisson distri-
bution, Oi ~ Po(θi Ei),  with mean θi Ei where θi is the
true unknown RR, estimated by SIR.
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Heterogeneity and over-dispersion tests
A Potthoff-Whittinghill (PW) test (16), was used to test
for presence of heterogeneity in the disease rates. This
statistic, under the null hypothesis, assumes constant
(or homogeneous) risk across the study region, against
the alternative that the relative risks are drawn from the
Gamma distribution, and is given by,

where E+ is the sum of the expected number of cases
for the region.
Further analysis used Dean’s test (17) to assess over-
dispersion in the disease rates. Overdispersion occurs
when the variance is significantly higher than their
mean, under the assumption that the count data are
drawn from the Poisson (Po) model. In the case of over-
dispersion, a better model must be proposed. A good
choice is a Negative Binomial (NB) distribution.
Tests for heterogeneity and overdispersion were im-
plemented using DCluster package (18) in R statisti-
cal software system (19).

Smoothing incidence relative risk

Relatively small population totals per area result in lar-
ge random variability, and the standardized incidence ra-
tios are unstable. Bayesian methods for disease mapping
(15, 20, 21), were carried out to smooth the relative risk
estimates in each sub-district. Three approaches were pro-
posed. The first approach assumed spatially unstructu-
red variability to produce globally smoothed estimates
for all sub-districts. The second approach assumed spa-
tially structured variability, leading to locally smoothed
risk estimates, which is achieved by pooling informa-
tion from neighbouring areas. The conditional autore-
gressive (CAR) model was used to smooth the data (20).
Two areas were assumed neighbours if they have a com-
mon boundary. The last approach combined the spatially
structured variation and unstructured heterogeneity
(20). The fitted three models are given as:

where log(Ei
) is the offset. The unstructured spatial ef-

fects are captured through (Ui), while the spatial

structured are modelled by S
i
. Smoothing was carried

out in BayesX 1.14 (22), using Markov Chain Monte
Carlo simulation techniques. Detailed methodological
aspects of the Bayesian analysis that apply in spatial
mapping are given
elsewhere (15, 20, 21). For each approach, both the Pois-
son and Negative Binomial models were fitted, giving
six models. Model comparison was based on the de-
viance information criteria (DIC). Models with a
smaller DIC were preferred as best fitting (23).
For the best model, maps were plotted accompanied
by measures of uncertainty. For the SIR map we also
plotted the standard error map. Bayesian maps were
accompanied by maps of posterior probabilities. The-
se maps assessed areas of significantly lower or
greater risk compared to the overall mean of the who-
le study area. For the Bayesian maps, we subdivided
the posterior probabilities into <20%, 20-80% and
>80%. Values of greater than 80% strongly indicate
that the risk was higher than the mean of the whole area,
and values of less than 20% indicate that the area had
risk lower than the mean risk of entire area. Interme-
diate values (20-80%) suggest that there was not
enough evidence to differentiate from the overall risk
(5).

Results

A total of 24 022 malaria cases and 31 325 population
at risk among under 5 years old children were recor-
ded in the northern region of Malawi between 2004 and
2006. The overall raw incidence rate (crude ratio) was
1.44 (range: 0.008, 6.33) episodes per person per year.
The expected number of cases ranged from 10.33 to 32
346.25. Summaries are given in Table 1.
Figure 1 shows the maps of unsmoothed SIR with the
corresponding standard errors. The maps have to be in-
terpreted by considering that different shades of grey
were proportional to risk values. The darker the area,
the higher the risk. The mean unsmoothed risk estimate
was 1.15 (95% confidence interval (CI): 0.14, 1.42).
Figure 1a portrays an inhomogeneous map, indicating
that the pattern was strongly influenced by random va-
riability in the distribution of malaria cases. A slight
shrinkage in rate values can be seen compared to the
crude ratio. The standard error of SIRs were high for
isolated areas reflecting extreme values on which the-
se estimates were based (Figure 1b).

Geographical variability in malaria
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There was significant heterogeneity (PW test, p < 0.001)
in risk across sub-districts in northern Malawi. In other
words, the variation in RR was more than by chance.
This agreed with the unsmoothed SIR (Figure 1). Part
of this heterogeneity was due to overdispersion in the
data (Dean test, p < 0.001). This means that the as-
sumption of data drawn from the Poisson model
might be wrong. As an alternative the NB model was
fitted. Table 2 gives the DIC for the all the six models
fitted. Clearly the NB models provided a better fit than
Poisson model, and the model with both spatially struc-

tured variation and unstructured heterogeneity terms fit-
ted the data adequately (Model 5 in Table 2). There-
fore the SIR were adequately smoothed using a NB mo-
del that allowed for both spatially structured variation
(local smoothing) and unstructured random effects (glo-
bal smoothing).
Table 3 summarises the smoothed relative risks for the
northern region of Malawi, using model 5, but also com-
pared with the other NB model that allowed for only
spatially structured variation or unstructured variation.
Figure 2 gives a plot of the total spatial effects based
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Figure 1. Choropleth maps of sub-district
level standardized incidence ratios for
malaria for under-five years old children
in four districts in northern region of
Malawi from January 2004 to December
2006: (a) the SIR and (b) the correspon-
ding standard error. Areas with no or in-
sufficient data are marked with diagonal
solid lines.

Table 1. Observed, expected cases, raw rates and unsmoothed standardised incidence ratio (SIR) at sub-district level in
northern Malawi.

*RR is multiplied by 100

Statistics Observed Cases Expected Cases Raw rate Unsmoothed  SIR*

Mean 6 135 6 135.06 144.29 110.77
Median 3 747 4 526.93 107.40 59.96
95%CI 1 000- 11 135 2 420.42-8 183.37 0.08-628.39 13.89-122.32
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on the best model. The relative risk ranged from 0.01
to 1.25, with mean RR=1.10 (plot a), with relatively
smaller RR for most areas. The corresponding map gi-
ves posterior probabilities (plot b). These were subdi-
vided into three intervals: <20%, 20-80% and >80%.
Areas with probability values of equal or higher that
80% indicates that RR was significantly higher than the

overall RR, and those with probabilities <20% suggest
that RR in the area was significantly lower than the ove-
rall RR. In between values implied that RR were not
significant. From the map we have areas of both po-
sitive excess risk (black areas), and significantly lower
risk (white areas).

Discussion

Unlike our previous estimates based on historical pre-
valence data (13), this study relied on routine incidence
data (3), and therefore provided more contemporary epi-
demiological characterisation of malaria risk in the re-
gion. This paper also highlights the importance of map-
ping the extent of malaria burden at a smaller level, i.e.,
sub-national scale. Because malaria transmission can
be being influenced by geographical environmental fac-
tors, estimates at such level are more robust and re-

Geographical variability in malaria
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Figure 2. (a) Smoothed estimates (relative
risk: RR) of malaria and (b) the corre-
sponding significance map of RR: negative
significance (white areas), not significant
(grey areas), and positive significance
(black areas).

Table 2. Model comparison measures for various spatial
models fitted in the study. See text for explanation.

*NB-Negative Binomial model, Po-Poisson model

Model Type* Spatial effect DIC

1 NB Structured 63.30
2 Po Structured 102.31
3 NB Random 56.81
4 Po Random 95.98
5 NB Structured+ Random 51.44
6 Po Structured+ Random 95.95
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flective of underlying drivers of disease risk (24, 25).
Such disease burden estimates are crucial for informing
malaria control programmes. These are important for
planning, monitoring and advocacy (2, 4).
We applied Bayesian hierarchical models to describe
the distribution of risk of malaria in children under the
age of five. This case study is but an example of many
conceivable applications of such models in public he-
alth research. It is evident that the risk estimates based
on the raw or standardized mortality ratio estimators
can be misleading (Figure 1a). This seems to suggest
that spatial correlation was strong in the data, and fai-
lure to account for these may lead to erroneous con-
clusions. The smoothed estimates, through the Baye-
sian hierarchical model, are easy to interpret, despite
the fact that the posterior estimates are conservative,
with high specificity and low sensitivity (5). This has
its own advantage as it avoids false positives thereby
producing true clusters in the maps. Put differently, the
smoothed malaria risk estimates give a more stable pat-
tern of the underlying risk of disease than that provi-
ded by the raw estimates (5, 21).
In this analysis, we saw that the risk of malaria is va-
ried between sub-districts, and even among areas that
neighbour each other. Our results is a critical first step,
which as in any disease mapping, should generate re-
levant aetiological hypotheses with regards possible risk
factors and covariates of the disease patterns. Factors
contributing to this pattern are a matter of conjecture.
It is likely that environmental factors including altitu-
de, nearness to water bodies, climatic factors, soil type
may influence malaria transmission (26, 27, 28). Un-
measured socio-economic differences may also con-
tribute to this pattern. Rural masses are at increased risk
of malaria infection and death because they are not able
to pay for effective malaria drugs nor afford transport
to a health facility for prompt effective treatment. Ru-
rality is, therefore, one of the factors worth considering
in future research (29). The geographical pattern can
also be explained by variability in health seeking be-

haviour. Health seeking behaviour plays a critical role
in accessing prompt and effective care. Home based care
or traditional medicines are often the first sources of
care in most African communities because of traditional
beliefs, difficulties in accessing and unavailability of
formal health services. Only when the disease is per-
ceived to be severe or near fatal, do people seek mo-
dern biomedical care at health facilities (30).
This analysis depended on the HMIS data and, as with
all routinely collected data, there are known limitations
on data quality in terms of completeness, correctness
and consistency. Health facility data under-report ma-
laria cases that occur in the community because most
people resort to home or community-based care (3, 31).
It is therefore reasonable to interpret the risk pattern rea-
lized in this study as representing the risk of dying from
severe malaria (1, 4). When considered necessary, un-
der-reporting can be adjusted for in the analysis (3).
In conclusion, this study has filled a significant gap in
the knowledge of geographical distribution of morbi-
dity attributed to malaria in Malawi. The maps iden-
tified sub-districts that were of high risk of malaria mor-
bidity, and demonstrates the significance of using the-
se disease mapping techniques in a surveillance system.
This has important potential implications for research
and health policy planning purposes. First, the maps can
generate leads for in-depth epidemiologic or geogra-
phic studies that may shed light on factors contributing
to malaria risk. Secondly, findings may help policy de-
cision makers to pinpoint high-risk areas with speci-
fic health problems. Thirdly, the maps may contribu-
te to developing and prioritizing health targets at the
district/ area level. Fourthly, results of this study
could form basis for distributing and targeting inter-
ventions across geographical zones (6). For instance,
the national malaria control programme may want to
explore why the risk of malaria is higher in some are-
as, and is significantly lower than other sub-districts.
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