
Introduction

Survival analysis is a powerful and flexible method
for identifying associations between an outcome and
a number of prior exposures to risk factors. In this
setting, Cox’s proportional hazards model (1) is the
most commonly used technique; being semiparamet-
ric, it is more attractive than a fully parametric mod-
el which places constraints on distributional assump-
tions.
There is growing interest in analysis within longitu-
dinal study designs where the event of interest can
occur repeatedly in the same individual. For exam-
ple, a patient diagnosed with a skin cancer can re-
lapse over time, or a subject with a psychiatric diag-
nosis can have multiple contacts with psychiatric
health services.
It is not possible to apply the standard Cox model to
multiple failure times, since the assumption of inde-

pendence between event times within individuals
would be violated. As a result, the time to first event
is commonly used for events that occur repeatedly.
Alternatively, the time between repeated occurrences
can be ignored and multiple event data can be
analysed, considering only the total number of
events (occurring in a fixed period of time) and re-
sorting to statistical models for counts, such as the
Poisson model or the negative binomial regression
model.
Several models and methods have been proposed in
the literature to deal with recurrent event data; see
Lawless (2), Kelly and Lim (3), Therneau and
Hamilton (4), Therneau and Grambsch (5), and, for a
review and discussion, Cook and Lawless (6).
Among these methods, one, proposed in 1995 by
Lawless and Nadeau (7), seems, in our opinion, par-
ticularly appealing for the clinical researcher, since,
as we will see, it allows a pictorial representation of
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the rate of recurrence and can be regarded as a sim-
ple and robust straightforward extension of the Cox
model to recurrence data. This approach, which is
based on the cumulative mean of the events, does not
involve a full probabilistic specification of the
processes, but requires knowledge of the individual
times at which events occur. 
Despite these appealing characteristics, little use has
been made of this technique in clinical research stud-
ies. A search of Scholar Google (http://scholar.
google.it), focusing on articles published during
2007 and the first months of 2008 and using the
phrases “mean function”, “cumulative mean func-
tion” and “proportional means” gave over 600 refer-
ences. However, only one article was published in a
medical journal. 
To expand the available tools for the applied re-
searcher, and to encourage use of the Lawless and
Nadeau (LN) approach to the analysis of recurrent
event data, we present a set of functions (available on
this journal’s website) written in the native R lan-
guage (8), which provide both graphical tools as well
as computational procedures for fitting the LN re-
gression model. R is a free programming language
and software environment for statistical computing.
Being an open source, its code is freely distributed,
under the GNU General Public Licence, through
CRAN (http://cran.r-project.org/), which is an
acronym for the Comprehensive R Archive Network. 

Data examples

To illustrate and motivate the development of the LN
method for the analysis of recurrent events, we shall
use two real-life datasets from the personal experi-
ence of the authors. 

Recurrence of cutaneous epitheliomas

Cutaneous epitheliomas are the most common malig-
nant neoplasms in the Caucasian population; the
most frequent are basal cell carcinoma (BCC) and
squamous cell carcinoma (SCC). Both BCC and
SCC are characterised by a relatively high frequency
of recurrences. In the Italian province of Trento, a
Skin Cancer Registry was established in 1992 with

the aim of recording all cutaneous tumours occurring
in the province’s residents (9, 10). We compare rates
of occurrence of cutaneous epitheliomas according
to gender and histotype, examining data available
from this registry for the period January 1992 to De-
cember 1997. For each patient, the time of each new
occurrence of skin cancer was recorded. A total of
2557 individuals were included in this study. During
the follow up, 311 recurrences were observed in 226
patients, while over 91% of subjects had no recur-
rence. The  maximum number of recurrences in a
single patient was eight, recorded in one subject. The
mean number of recurrences per patient was 0.12
with a standard deviation of 0.48 (therefore the ratio
between the variance and the mean was about 2:1).

Patterns of psychiatric contacts in a psychiatric
case register

Psychiatric data collected in a psychiatric case regis-
ter document contacts between residents and the psy-
chiatry services of a selected geographical area.
These data typically show a large number of subjects
with a small number of contacts and, at the same
time, a low number of subjects recording a high
number of contacts. The data presented refer to pa-
tients entered in the South Verona Psychiatric Case
Register (SVPCR) in the period 1 January 1979 to 31
December 1991 (11, 12). All the subjects were fol-
lowed up for 13 weeks after the day of their first con-
tact. For each patient, the total number of contacts in
the 91 days of follow up was known, as was the day
on which each contact took place. The following co-
variates were available: gender, occupational status,
diagnosis, referral source of the first contact, type of
first contact. A total of 3454 subjects were included
in this study, recording a total of 6913 contacts. The
mean number of contacts per patient (in the 91 days)
was 2.0 with a standard deviation of 3.7 (therefore
the ratio between the variance and the mean was
about 7:1); 1589 subjects (46.0%) had no further
contact, after the first one, during the study period
while the highest number of contacts recorded for a
single patient was 48; a total of 28 patients each had
more than 20 contacts during the follow up.
Table 1 shows how these data were recorded in the
first 14 patients. The total follow-up time and the total
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number of recurrences observed are given in the first
two columns; the day on which each of the contacts
took place is reported in the following columns. For
example, the first subject had two contacts: the first af-
ter 41 days of follow up and the second 59 days after
the start of the follow up. The fifth subject had no con-
tact at all during the 91 days of follow up, so all the
cells referring to the recurrence times are empty. 
In both datasets presented, the high ratio between the
variance and the mean makes the Poisson assump-
tion untenable; in fact, some patients were more
prone to recurrent events than others, which suggests
that a non-parametric or a semiparametric procedure
is more appropriate, particularly to test for treatment
differences. 

The cumulative mean function

Let us consider k individuals, each observed for the
follow-up time τi (i = 1,...,k). Let ri denote the ob-
served number of events (recurrences) for subject i
over the interval [0,τi] and ti1 ≤ ... ≤ tiri the times of
events. 
For example, looking at the data reported in Table 1,
the follow-up time for patient number 13 was τ13 =
91 days, during which a total number of recurrences
r13 = 5 were observed; the corresponding times t13,1 ≤
t13,2 ≤ t13,3 ≤ t13,4 ≤ t13,5 were, respectively, 40, 45, 54,
68, and 88.

The cumulative mean function (CMF) of the number
of recurrences Ni(t) occurring for the i–th individual
over the interval [0,t] is defined as M(t) = E[Ni(t)],
where M(t), which is supposed to be the same for all
the subjects, is the sum (or the integral, depending on
the time scale) of the mean function m(t), i.e. the ex-
pected value of the number of events experienced at
time t. In what follows, for the sake of simplicity, we
refer to the discrete-time case.  
Under the assumption that the k individuals are mu-
tually independent and that ni(t) (i.e. the number of
events observed at time t for the i–th individual) are
independent Poisson random variables with mean
m(t), the maximum likelihood estimate of m(t) is
m̂(t) = n.(t)/δ.(t) (i.e. the mean number of events ob-
served at time t over all the k individuals) and the es-

timate of M(t) is M̂(t) =     n.(s)/δ.(s), i.e. the sum of

the mean number of events observed up to time t. In

fact, n.(s) =     ni(s) is the total number of recurrences

observed at time s and δ.(s) =     δi(s) is the overall

number of individuals under observation at time s, in
which δi(s)  is an indicator variable equal to one if in-
dividual i is under observation and “at risk” at time
s, and zero otherwise. 
For example, in the SVPCR data, all the subjects
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Follow-up Number Time of 1st 2nd time 3rd time 4th time 5th time
time  of recurrences recurrence

91 2 41 59
91 1 91
91 3 17 42 80
91 1 81
91 0
91 2 4 67
91 3 8 39 88
91 1 84
91 2 26 68
91 0
91 0
91 0
91 5 40 45 54 68 88
91 3 1 4 10

Times are expressed in days.

Table 1. Recurrence data recorded for the first 14 patients in the South Verona Psychiatric Case Register.
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were followed up for 91 days after being entered in
the register, so that δ.(s) is 3454 for all the times s,
from s=1 to s=91 (in particular, δ.(1) = 3454 and
δ.(2) = 3454). On the other hand, at day one from the
start of the follow up, 181 contacts were observed, so
that n.(1) = 181; at day two from the start of the fol-
low up, 161 contacts were observed, so that n.(2) =
161. The mean number of events observed at time 1
was therefore m̂(1) = n.(1)/δ.(1) = 181/3454, while
that observed at time 2 was m̂(2) = n.(2)/δ.(2) =
161/3454. The cumulative mean number of events
observed at time 2 was therefore  M̂(2) =  m̂(1) + m̂(2)
= 181/3454 + 161/3454. 
The plot of  M̂(t) versus t yields information about the
number of events expected by time t and whether
two groups differ significantly in the expected num-
ber of events. The left panel of Figure 1 shows the es-
timated cumulative mean number of contacts record-
ed in the SVPCR data; 95% confidence intervals are
also shown. The slope of  M̂(t) can be considered a
failure rate, thereby allowing the plot of  M̂(t) to yield
information on the event process. The occurrence of
psychiatric contacts is higher in the first weeks and
then declines, a pattern, well known to physicians
(since patients need more attention, particularly in
the initial phases of their illness), that is pictorially
and quantitatively represented in Figure 1. After 4
weeks of follow up, the cumulative mean number of

contacts is 1; instead, to obtain a cumulative mean of
2, thirteen weeks are needed. The differences in the
cumulative means between subsequent weeks seem
to show a steady decline. From a modelling point of
view, the process of event occurrence considered
here is a non-homogeneous Poisson process. Were
the process homogeneous, the plot would show a
straight line.
As far as the cutaneous epitheliomas are concerned
(Figure 1, right panel), the cumulative means of the
numbers of recurrences after 1, 3, and 5 years of fol-
low up are, respectively, 0.054, 0.137 and 0.211. The
differences in the cumulative means between subse-
quent years appear approximately constant (about
0.04 recurrence/year of follow up). 

The proportional means regression
model 

In randomised clinical trials as well as in epidemio-
logical settings, it is frequently deemed interesting to
make comparisons among groups, possibly account-
ing for the effects of a number of covariates. For ex-
ample, in the SVPCR data, we are interested in eval-
uating whether the type of the first contact (un-
planned vs planned) is associated with the recurrence
rate of subsequent contacts. The plot of the CMFs for
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Figure 1. Estimated cumulative mean function, together with 95% confidence limits, for the psychiatric contacts in South
Verona (left panel) and for the recurrences of cutaneous epitheliomas (right panel).
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these two groups is shown in the left panel of Figure
2. A higher recurrence rate is clearly evident in pa-
tients who entered the SVPCR with an unplanned
contact. On the other hand, it appears that the recur-
rence rates in males and females are similar (see the
right panel of Figure 2). However, what we need is a
formal test of significance together with a quantita-
tive measure of the “difference” between recurrence
rates in the two groups. A regression model can pro-
vide an appropriate answer to both these needs.
The LN model is a semiparametric proportional
means regression model based on the mean function
m(t), analogous to the proportional hazards model for
lifetime data. The regression model is set up includ-
ing a multiplicative effect of a p × 1 vector xi of fixed
covariates (without the constant for the intercept
term) on the mean function: mi(t) = m0(t)exp(blxi),
where m0(t) ≥ 0 is a baseline mean function and b is
a p × 1 vector of regression coefficients. In their pa-
per, Lawless and Nadeau (7) considered the more
general case mi(t) = m0(t)g(xi(t);b), where g is a pos-
itive-valued function and the covariates can be time-
dependent.
Under the Poisson assumption, Lawless and Nadeau
obtained the following estimating equations for the
m0(t) and b:

[1]

and

[2]

where, as previously indicated, ni(t) represents the
number of events that occur at time t for subject i and
δi(t) = 1 if t ≤ τi and δi(t) = 0 if t > τi.
The authors noted that equation [1] gives

[3]

and inserting equation [3] in equation [2], they ob-
tained the p × 1 system of equations in b

[4]

This set of equations are Cox partial likelihood equa-
tions, meaning that packages that implement partial
likelihood analysis of repeated events can be used to
fit the proportional means model; for example, in the
survival package of R (13), the function coxph can be
used to estimate the regression coefficients employing
the so-called “start/stop” format for the recurrence da-
ta and the cluster option for the individuals in order to
obtain robust standard errors. Otherwise, equations [4]
can be solved iteratively using Newton’s method.

Figure 2. Estimated cumulative mean functions according to gender (right panel) and to the type of the first contact with
the South Verona psychiatry services (left panel).
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If, as is the case with the SVPCR data, all the sub-
jects are observed for the same follow-up time (τ1 =
... = τk = τ) so that δi(t) = 1 for all the times t ≤ τ, re-
gardless of the subject, equations [4] can be simpli-
fied and it is possible to arrive at a meaningful inter-
pretation. In fact, summing over all the times and in-

dicating (i.e. the total number of contacts

of subject i) and                (i.e. the total number of

contacts observed), equations [4] can be rewritten in

the much more compact way                             where

n̂i = win and wi are weights (which add up to one) de-

fined as                               In other words, n̂i are the

recurrences expected in subject i on the basis of his
“risk score”, given by exp(b’xi) as a fraction of the

“total risk score”                      In this case, equations

[4] are analogous to the equations to be solved for the
“standard” Poisson regression model, i.e.  

where, however, b contains an

intercept term so that the number of equations to be
solved is p + 1. In actual fact, apart from the inter-
cept, the estimates of the p regression coefficients are
the same for the LN model and the Poisson regres-
sion model. As a corollary, in the particular case con-
sidered, the estimates of the regression coefficients
of the LN model are unaffected by knowledge of the
individual recurrence times. 
Robust variance estimates for the regression param-
eters b̂, accounting for the dependence structure of
the recurrence times, can be computed as outlined in
the appendix of the paper by Lawless and Nadeau
(7).
As far as significance tests and confidence intervals
are concerned, Lawless and Nadeau showed that un-
der mild conditions √⎯k (b̂ – b) is asymptotically nor-
mal. The accuracy of the approximation depends on
the number of subjects (k), on the average counts per
individual, and on the degree of overdispersion. Ac-

cording to Lawless and Nadeau, the approximation
can be considered satisfactory when k is equal to 30
or more and the average count per individual is
greater than 4 except when overdispersion is very
large (variance at least five times that of the Poisson
model). In this case the approximation is satisfactory
if k is 90 or more. Under these prescriptions the as-
ymptotic approximations are sufficiently accurate for
practical use.
The main assumption of the LN model is that, condi-
tional on the covariate values, the end-of-observation
times τi are determined independently of the event
process. If this is not the case, then M̂(t) may be se-
riously biased.
Lin et al. (14) provided a rigorous justification of the
LN procedure through the modern empirical process
theory. Furthermore, they developed both graphical
and numerical methods based on Gaussian processes
for checking the adequacy of the fitted model.

Proportional means regression results 

The LN proportional means regression model was
fitted to the two datasets considered. Estimates of the
regression coefficients as well as the associated stan-
dard errors were obtained employing the R mfreg
function described in the appendix. This function has
the peculiarity of not requiring data in the
“start/stop” format, which can be an advantage as
many datasets are not organised in this “long” for-
mat.
The results relative to cutaneous epitheliomas are
set out in Table 2. Males showed a higher number
of recurrences than females (about 1.7 times that
recorded in women), while a non-significant effect
of histotype (as well as of the interaction between
sex and histotype) was found. The finding of a sim-
ilar biological behaviour between BCC and SCC is
somewhat unexpected, since it is well known to
dermatologists that BCC is a cancer with a higher
probability of recurrence than SCC. However, in
this study, multiple synchronous tumours were con-
sidered a single multifocal lesion (i.e. two or more
tumours of the same histotype diagnosed in the
same subject on the same day were considered a
single recurrence); in this case (i.e. when only
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metachronous tumours were considered), the recur-
rence pattern of the two histotypes was quite simi-
lar. On the other hand, a higher recurrence rate in
males is well known; however, employing the re-
gression model we were able to quantify the gender
effect (in univariate as well as in multivariate analy-

ses), both as a point estimate and as a 95% confi-
dence interval (1.2, 2.3).
Table 3 shows the results of the analysis of the pat-
tern of contacts with psychiatry services in South
Verona. As far as the univariate analysis is con-
cerned, since all the subjects were followed up for 91
days (so that the same number of subjects was at risk
at each time), an exact solution can be obtained for
the estimating equations of the LN model regression
coefficients; for a categorical variable with k levels,
coded with k – 1 dummies, the estimate of the j-th re-
gression coefficient is 1n[(n0Nj)/(njN0)], where nj is
the number of subjects in the category j+1 and Nj is
the number of contacts had by the subjects in the cat-
egory j+1 (the subscript 0 indicates the reference cat-
egory). With the exception of gender, all the other
variables considered were associated with the num-
ber of contacts.
This result was confirmed when the joint effect of all
the considered variables was evaluated in a multivari-
ate analysis (Table 3). A significantly higher rate of
contacts was found for unemployed subjects, for pa-
tients with an unplanned first contact, and for those
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Proportional Means Proportional Means Poisson Negative Binomial
Univariate Analysis Multivariate Analysis Multivariate Analysis Multivariate Analysis

b se z b se z b se z b se z

Gender
Females vs Males -0.090 0.063 -1.427 -0.057 0.072 -0.783 -0.057 0.026 -2.138 -0.127 0.058 -2.183

Occupational status
Unemployed vs Employed 0.758 0.110 6.919 0.478 0.109 4.363 0.478 0.040 12.090 0.564 0.104 5.416
Other vs Employed 0.106 0.065 1.630 0.138 0.072 1.927 0.138 0.028 4.918 0.152 0.060 2.526

Diagnosis
Affective dis. vs Schiz. -0.892 0.101 -8.849 -0.812 0.100 -8.156 -0.812 0.038 -21.276 -0.788 0.109 -7.226
Organic psych. vs Schiz. -0.699 0.206 -3.402 -0.648 0.210 -3.084 -0.648 0.071 -9.066 -0.532 0.181 -2.940
Alc. / pers. dis. vs Schiz. -0.745 0.124 -6.013 -0.667 0.118 -5.640 -0.667 0.042 -15.886 -0.687 0.118 -5.808
Neurotic dis. vs Schiz. -1.210 0.105 -11.524 -1.061 0.102 -10.416 -1.061 0.041 -26.174 -1.012 0.110 -9.236
Other dis. vs Schiz. -1.348 0.111 -12.174 -1.227 0.108 -11.398 -1.227 0.044 -28.054 -1.201 0.113 -10.669

Referral source
GPs vs Self-referral -0.265 0.085 -3.108 -0.010 0.085 -0.115 -0.010 0.040 -0.245 -0.008 0.089 -0.087
Others vs Self-referral -0.510 0.068 -7.460 -0.350 0.078 -4.508 -0.350 0.029 -12.180 -0.377 0.063 -6.009

First contact
Unplanned vs Planned 0.683 0.066 10.355 0.410 0.073 5.626 0.410 0.028 14.844 0.385 0.065 5.904

Abbreviations: dis.= disorder; Schiz.=Schizophrenia; psych.=psychosis; Alc. / pers. dis.=Alcoholism/personality disorder.

Table 3. Parameter estimates for the proportional means regression of recurrences of contacts with psychiatry services.

Covariate Parameter SE z
estimate

Univariate Analysis
Histotype (BCC vs SCC) 0.086 0.195 0.441
Sex (F vs M) -0.503 0.165 3.052

Multivariate Analysis
Histotype (BCC vs SCC) 0.100 0.197 0.511
Sex (F vs M) -0.505 0.166 3.045

Histotype (BCC vs SCC) 0.285 0.226 1.262
Sex (F vs M) -0.129 0.373 0.347
interaction -0.494 0.413 1.197

Abbreviations: BCC = basal cell carcinoma; SCC = squamous
cell carcinoma

Table 2. Parameter estimates for the proportional means
regression of the recurrences of cutaneous epitheliomas.
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who were self-referred (or referred by relatives). As
far as diagnosis is concerned, a higher rate of contacts
was found for schizophrenic patients. 
For comparison, Table 3 also gives the estimates of
the regression coefficients from the Poisson model
and from the negative binomial regression model es-
timated taking into account only the total number of
contacts and discarding the recurrence times. It is
worth noting the striking difference in the estimated
standard errors between the LN and the Poisson
models –2- to 3-fold greater with the former than the
latter – leading to more significant statistical tests
(more significant than they really are) and overly
narrow confidence intervals when employing the
naïve Poisson model. On the other hand, if we calcu-
late standard errors for the Poisson model employing
a robust sandwich estimator, the values obtained are
the same as those obtained with the LN model. Fur-
thermore, the estimates of the regression coefficients
of the Poisson and of the LN models, too, were the
same, as expected. We recall that this happens be-
cause all the follow-up times are the same, which is
not generally the case. However, from a computa-
tional point of view, a Poisson regression model can
be fitted to the recurrence data to obtain initial esti-
mates for the regression coefficients in order to speed
up the convergence of the Newton algorithm. The

standard errors from the negative binomial regres-
sion are comparable with those obtained from the LN
model.
Informal graphical techniques developed for check-
ing the adequacy of the Cox model in survival analy-
sis can be employed for the LN model, too. A simple
graphical evaluation of the proportionality assump-
tion can be obtained by plotting the predicted CMF
against the observed one for different groups. The
left panel of Figure 3 shows this comparison for the
SVPCR data relative to the type of the first psychi-
atric contact. Although there is no doubt about the
prognostic role of this variable, it nevertheless ap-
pears that the proportionality assumption does not
hold, particularly for the first weeks of follow up,
where the model underestimates the cumulative
mean number of contacts for patients with an un-
planned first contact. Once again we can interpret
this finding from a clinical point of view; in fact, the
variable considered is a proxy for the severity of the
psychiatric illness and patients with a more severe
disease need more attention in the initial phases of
their illness. However, as far as the Cox model is
concerned, this violation does not invalidate the
comparison between the two groups considered,
since the observed lines are always well separated
and do not cross. Therefore, although a violation of
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Figure 3. Left panel: estimated cumulative mean number of contacts with the South Verona psychiatry services according
to the type of the first contact. Dotted lines represent predicted cumulative mean number of contacts according to the pro-
portional means regression (see results reported in Table 3). Right panel: estimated cumulative mean number of recur-
rences of cutaneous epitheliomas according to gender. Dotted lines represent predicted cumulative mean number of con-
tacts according to the proportional means regression (see results reported in Table 2). 
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the proportionality assumption is present, this viola-
tion does not appear crucial, hence we can employ
the LN estimate of the “average” effect of the type of
the first psychiatric contact as a quantitative tool for
comparison with other studies. In the right panel of
Figure 3, a similar comparison is shown for the effect
of gender on the recurrences of cutaneous epithe-
liomas. In this case there is no evident departure
from the proportionality assumption, as was also
suggested by plots of the natural logarithm of M̂(t)
against time in males and females, which were
roughly vertical translations of one another (data not
shown).
Since the mean number of recurrences was less than
4 in the two datasets analysed and the overdisper-

sion in the SVPCR data was very large, we wonder
whether the asymptotic approximation can be con-
sidered sufficiently accurate, given that the number
of subjects was quite large. A bootstrap estimate of
the sampling distribution of the regression coeffi-
cients performed with both datasets revealed quite
good agreement with the normal distribution and a
bootstrap variance quite similar to the robust one. A
second check was performed running four simula-
tions employing the SVPCR dataset as a population
from which random samples of different size k (60,
80, 100, 120) were repeatedly extracted (using the
type of the first psychiatric contact as covariate).
Figure 4 shows the normal quantile-quantile plots
of the simulated sampling distribution of the regres-
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Figure 4. Normal quantile-quantile plots of the simulated sampling distribution of the regression coefficient for the type
of the first psychiatric contact for 4 different sample sizes. 
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sion coefficient for the different sample sizes con-
sidered. As can be seen, the simulated sampling dis-
tribution was different from the Gaussian for sam-
ples of size 60 and 80; however, when the number
of subjects considered was 120, the normal approx-
imation appeared satisfactory.

Discussion

Recurrent events arise frequently in medical settings
and a number of different approaches have been de-
veloped to deal with multiple event survival data.
However, despite the growing interest in the analytical
techniques, these methods have not been commonly
applied in the analysis of data arising from clinical tri-
als and/or observational studies published in medical
journals, perhaps as a result of their complex structure.
There is a general tendency to use simplistic methods
employing the time to first event as the end point of
the analysis. However, discarding information on sub-
sequent events implies a loss of efficiency in the
analysis and can provide a rather narrow perspective
on the event process and covariate effects. 
In this paper, we have reviewed a simple and robust
method that can be considered a conceptually
straightforward counterpart of the Kaplan-Meier es-
timate and of the Cox model for the analysis of
datasets with multiple failures per subject. This
method relies on the cumulative mean function M(t)
and on a multiplicative effect of the covariates. Al-
though one could specify a parametric form for
M(t), the non-parametric estimates of M(t) and of
its variance proposed by Lawless and Nadeau are
robust since they are moment estimates. Also the
regression coefficients are based on Poisson maxi-
mum likelihood estimates which are valid quite
generally because they are generalised least
squares, or quasi-likelihood, estimates, provided
that, conditional on the covariate values, τi are de-
termined independently of the event processes. 
The most important assumption of this method is
that the end of observations times τi must be inde-
pendent of the event processes. It is easy to think of
situations in which this would not hold. For exam-
ple, if we were studying system failures and sys-
tems with many failures had earlier been withdrawn
from service. On the other hand, in the examples

discussed, it is likely that the independence as-
sumption is satisfied, since censoring occurred at a
fixed time in all the subjects (in the skin tumour
dataset, the end of the follow-up period was the
same for all the subjects, while in the SVPCR
dataset all the patients were observed for 91 days).
However, it is possible to check, at least informally,
this independence for the skin cancer dataset,
grouping the subjects according to their end-of-ob-
servation times into two groups (up to two years of
follow up, with a dummy covariate xi equal to 0;
between 3 and 5 years of follow up, with a dummy
covariate xi equal to 1) and then testing that M(t) in
the two groups are equal. The estimate of the re-
gression coefficient (–0.1415) together with its as-
sociated standard error (0.2134) gave no indication
that τi are not independent of the patterns of recur-
rences. As Lawless and Nadeau pointed out, the co-
variate xi = τi provides a more sensitive check of the
independence of τi. Once again, in the case present-
ed, the estimate of the regression coefficient
(–0.0404) was comparable with the associated stan-
dard error (0.0514), meaning that the independence
assumption cannot, as expected, be rejected. If we
specify a full probabilistic model for event process-
es, then the need for independent τi can be removed,
but variance estimates for parameters would be less
robust than the ones given in (7) if the specification
of the model is not correct.  
With the hope of making the LN method more acces-
sible to medical researchers, so that it can be a valu-
able addition to the set of statistical tools for the
analysis of failure time data, we have provided a set
of R functions which allows both a graphical display
of the recurrence data and a more sensitive inference
concerning the effect of covariates on the recurrence
rate. 
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Appendix

R functions
To estimate the cumulative mean function as well as the regression coefficients of the LN proportional means model a set
of functions are provided, all written using the native R language for maximum portability. The functions, which are avail-
able on the website of this journal, are:

cmfplot estimates the cumulative mean function (CMF) and produces a graphical plot. The user must supply three
arguments, i.e. a vector tau, which contains the follow-up times, a matrix tempi with the recurrence times
in the columns, a vector nr with the number of recurrences; optional arguments are the confidence level
(set as default to 95%), the output (set to FALSE), the graphical plot of the CMF (set to TRUE) and of the
confidence bands (set to TRUE). If the output argument out is set to TRUE, a matrix is given as output of
the function to be employed for further analyses; the rows of the matrix are the times considered (with in-
crements of 1 unit), while the columns have the following meanings:   
1) the time t
2) the estimate of the CMF at the time t
3) the estimate of the standard error of 2)
4) the lower limit of the confidence interval
5) the upper limit of the confidence interval
6) the number of subjects at risk at time t (i.e. δ.(t))
7) the total number of recurrences observed at time t (i.e. n.(t))
Note that δi(t) = 1 when t ≤ τi and δi(t) = 0 otherwise.

mfreg estimates the regression parameters of the LN proportional means model. The user must supply four argu-
ments; the first three (tau, tempi, nr) are the same as those described above; the fourth argument is the ma-
trix xcov containing the values of the covariates (for categorical variables, the corresponding dummies
must be provided). A further argument (betastart) can be set to TRUE if the user wants the estimates of the
regression coefficients from Poisson regression on counts (without considering the recurrence times) to be
used as starting values for the Newton algorithm.
The output of mfreg is a list containing the following elements: 
1) $estimates with the estimates of the regression coefficients, their standard errors and the associated sig-

nificance
2) $asvar with the elements of the covariance matrix of the regression coefficients calculated according to

formula 3.10 in (7)
3) $basemf with the estimate of the baseline mean function m0 (t)
4) $times with the corresponding times. 
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nsolve R does not implement a function to solve a system of non-linear equations; on the other hand, the gener-
al-purpose optimisation function optim is available to find the minimum of a function. It is possible to use
optim to find the solution of equations [4] by minimising the squared-norm of the set of functions (Ravi
Varadhan has written a simple function nlsolve which performs this task by calling optim and using the
quasi-Newton algorithm BFGS within optim making it available for R users). Here we propose a naïve al-
gorithm which implements the standard Newton method in the R function nsolve which is called by cm-
freg. The first two arguments of nsolve are two functions (see below), since in R function can be passed
as arguments to functions. The first argument (fun) calculates and returns the values of the set of functions
in equations [4] at a guessed value

~
b, while the second (jac) calculates the Jacobian matrix using the cur-

rent guess
~
b; the third argument is the vector of guessed values and the fourth is a list containing ancillary

data needed for performing the previous calculations. The last two arguments of nsolve control the conver-
gence of the algorithm. Some information on the control flow is written on the terminal. On exit, nsolve
returns the numerical values of the functions at the proposed final solution. 

fun is the first argument of nsolve; calculates the values of the functions in the equations [4] at a guessed val-
ue 

~
b. 

jac is the second argument of nsolve; calculates the Jacobian matrix using the current guess
~
b.

To illustrate the use of the proposed functions, we employed the cutaneous epithelioma dataset (also available on the web-
site of this journal). This dataset is supplied as an R workspace file (with extension .rdata).
First, we (the user) had to load into the R workspace the set of functions (having downloaded them from the journal web-
site): source(“mfreg.txt”). 
Next, we loaded the skin cancer dataset: load(“cutepi.rdata”). In R workspace there are now the vectors tau (follow-up
times) and nr (total number of recurrences), each with 2557 elements, the matrix tempi (recurrence times) and the matrix
Xcov, with 3 columns: gender (0 = males; 1 = females), histotype (0 = SCC; 1 = BCC) and the interaction.  
A look at the matrix tempi shows that the input of the data does not follows the “standard” counting process style of in-
put. According to this style, a unit which has two recurrences and a censoring time has three observations; each observa-
tion has a start time, a stop time, and an indicator of whether the stop time is a recurrent event time or a censored time. As
shown in Table 1, we preferred to store the follow-up times and the total number of recurrences observed in each subject
in two vectors, and the recurrence times in a matrix (with most of the cells possibly empty).
The estimate of the cumulative mean number of recurrences, together with 95% confidence limits, can be obtained em-
ploying the function cmfplot. The following script displays the plot shown in the right panel of Figure 1.

Script 1.
allpts <- cmfplot(tau,tempi,nr,out=TRUE,plot=FALSE)
plot(c(0,2180),c(0,0.3),type=”n”,xlab=”Days”,ylab=”Cumulative Mean Number of Contacts”)
x <- allpts[,1]
y <- allpts[,2]; lines(x,y,lty=1,lwd=2)
y <- allpts[,4]; lines(x,y,lty=3,lwd=1.5)
y <- allpts[,5]; lines(x,y,lty=3,lwd=1.5)

The plot shown in the right panel of Figure 3, comparing the cumulative mean number of recurrences in males and fe-
males, can be reproduced using script 2. The first row selects male subjects (with the second dummy covariate equal to 0)
and then the corresponding cumulative mean function is estimated (calling cmfplot and storing the result in mal). The third
row selects females and then the corresponding cumulative mean function is estimated (calling cmfplot and storing the re-
sult in fem). The rows that follow plot the two “curves”.

Script 2.
ok <- which(Xcov[,2]==0)
mal <- cmfplot(tau[ok],tempi[ok,],nr[ok],out=TRUE,plot=FALSE)
ok <- which(Xcov[,2]==1)
fem <- cmfplot(tau[ok],tempi[ok,],nr[ok],out=TRUE,plot=FALSE)
plot(c(0,2180),c(0,0.32),type=”n”,xlab=”Days”,ylab=”Cumulative Mean Number of Tumours”,axes=FALSE)
axis(2)
axis(1,at=c(0,seq(365,365*6,by=365)))
box()
lines(fem[,1],fem[,2],type=”l”,lwd=2)
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lines(mal[,1],mal[,2],type=”l”,lty=3,lwd=2)
legend(0,0.30,c(“females”,”males”),lty=c(1,2),lwd=2)

To obtain the parameter estimates of the LN proportional means regression model shown in Table 2, script 3 was execut-
ed. Lines 1-3 evaluate the histotype effect; lines 4-6 evaluate the gender effect; lines 7-9 evaluate the joint effect of histo-
type and gender; lines 10-12 evaluate the effect of histotype, gender and of the interaction term. In all cases the result of
the call to mfreg (which is a R “list”) is stored in the object fit; lines 3, 6, 9, 12 of script 3 extract from fit the parameter
estimates (together with the associated standard errors).

Script 3.
xcov <- matrix(Xcov[,1],ncol=1)
fit <- mfreg(tau,tempi,nr,xcov)
fit$estimates
xcov <- matrix(Xcov[,2],ncol=1)
fit <- mfreg(tau,tempi,nr,xcov)
fit$estimates
xcov <- Xcov[,1:2]
fit <- mfreg(tau,tempi,nr,xcov)
fit$estimates
xcov <- Xcov[,1:3]
fit <- mfreg(tau,tempi,nr,xcov)
fit$estimates

Finally, to obtain the predicted cumulative mean number of recurrences in males and females and to plot them together
with observed ones, script 4 can be employed. The first 14 rows are taken from scripts 2 and 3. In line 15 the predicted cu-
mulative mean number of recurrences for males (whose dummy was coded 0) is calculated (employing the R function
cumsum) after having extracted from the result of the fit the estimated baseline mean function (fit$basemf). In line 17 the
predicted cumulative mean number of recurrences for females (whose dummy was coded 1) is calculated from the esti-
mated baseline mean function and the gender regression coefficient (fit$basemf*exp(fit$est[1,1]). Lines 16 and 18 plot
predicted “curves” as dotted lines. 

Script 4.
ok <- which(Xcov[,2]==0)
mal <- cmfplot(tau[ok],tempi[ok,],nr[ok],out=TRUE,plot=FALSE)
ok <- which(Xcov[,2]==1)
fem <- cmfplot(tau[ok],tempi[ok,],nr[ok],out=TRUE,plot=FALSE)
plot(c(0,2180),c(0,0.32),type=”n”,xlab=”Days”,ylab=”Cumulative Mean Number of Tumours”,axes=FALSE)
axis(2)
axis(1,at=c(0,seq(365,365*6,by=365)))
box()
lines(fem[,1],fem[,2],type=”l”,lwd=2)
lines(mal[,1],mal[,2],type=”l”,lty=3,lwd=2)
legend(0,0.30,c(“females”,”males”),lty=c(1,2),lwd=2)
xcov <- matrix(Xcov[,2],ncol=1)
fit <- mfreg(tau,tempi,nr,xcov)
x <- fit$times; y <- cumsum(fit$basemf)
lines(x,y,lty=3)
x <- fit$times; y <- cumsum(fit$basemf*exp(fit$est[1,1]))
lines(x,y,lty=3) 
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