
Introduction

The modern theory of causal diagrams arose within the
disciplines of computer science and artificial intelligence
by Pearl (1) and Spirtes, Glymour and Scheines (2).
The use of causal diagrams in epidemiology was first
proposed by Greenland, Pearl, and Robins who showed
how the use of such graphs can serve as a visual yet log-
ically rigorous aid for summarizing assumptions in well
defined epidemiological research hypotheses. 

They have also demonstrated how the use of such graph
can aid in planning data collection and analysis, in com-
municating results, and, with relevance to this paper,
in avoiding subtle pitfalls in the selection of confounders
(3, 4).
“Confounding is the problem of confusing or mixing
of exposure effects with other “extraneous” effects: if
at the time of its occurrence, exposure was associated
with pre-existing risk for the outcome, its association
would reflect at least in part the effect of this baseline
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Summary
The goal of most epidemiological studies is to determine an unbiased estimate of the effect of being exposed to a given risk
factor on a well defined outcome (disease, death) taking into account the effects of confounding. 
However, it may not be entirely clear which confounders should be adjusted for in the analysis and which should not, even
after using expert knowledge. 
Recent developments in epidemiological theory have clearly shown that traditional methods of identifying and adjusting for
confounding may be inadequate and so more recently the use of Directed Acyclic Graphs (DAGs) has been advocated.
DAGs are a useful graphical tool for encoding assumptions about causality and deciding apriori which variables require ad-
justment in the analysis and which not.
However, many clinical problems require complicated DAGs and therefore investigators may continue to use traditional prac-
tices because they are discouraged by the apparent complexity. Therefore, the purpose of this manuscript is to provide a sim-
ple overview on DAGs and how they can be used to select variables which require adjustment in the analysis.
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association, not the effect of exposure itself. The por-
tion of the association reflecting this baseline associ-
ation was called confounding” (5).
The factors responsible for confounding are called con-
founders; according to a standard textbook a confounder
is traditionally defined as any variable that meets the
following three necessary (but not sufficient or defin-
ing) characteristics:
1) “a confounding factor must be a risk factor for the

outcome ”;
2) “a confounding factor must be associated with the

exposure under study in the source population”;
3) “a confounding factor must not be affected by the

exposure or the disease. In particular, it cannot be
an intermediate step in the causal path between the
exposure and the disease” (6).

Bias introduced by confounding could, in principle, pro-
duce an effect between exposure and outcome, or could
cause an overestimate/underestimate of such effect. Ul-
timately it could be strong enough to reverse the true
direction of the effect. The traditional approach to con-
founding is to “adjust for it”, by including certain co-
variates in a multiple regression model or by stratifi-
cation.
Recent developments in epidemiology have shown that
traditional methods for identifying and adjusting for con-
founding (such as comparing adjusted and unadjusted
effect estimates or the application of automatic variables
selection procedures) may be inadequate (3, 7).
The traditional definition of confounder (a variable that
is a risk factor for disease and is associated with ex-
posure but not affected by exposure) has in fact some
limitations. 
One is that it applies only to the classical condition in
which there is just one variable to consider (8). Another
one is that, while every confounder satisfies all the three
traditional criteria, some nonconfounders satisfy them
as well. In other words the three traditional criteria for
defining a confounder are necessary but not sufficient.
In some cases, adjusting for such nonconfounders that
meet the above definition is harmless, but in others it
introduces bias (9).
Methods to aid in identifying sufficient sets of variables
for control have been developed using graphical causal
models (or Directed acyclic graphs-DAGs) (3, 10).
The strength of using DAGs is that traditional criteria
of confounding usually agree with graphical criteria;
that is, one should choose the same set of covariates for
adjustment using either set of criteria. Nonetheless, there
are cases in which the criteria disagree, and when they

diverge, it is the conventional criteria that will fail (see
the appendix for a better explanation of this concept).
In the following section, we illustrate the causal graph
theory starting from an example of confounder iden-
tification using DAG to elucidate the hypothetical re-
lationship between maternal alcohol use in pregnancy
and low intelligent quotient (IQ) scores at age 5.

Causal graphs

Causal inference generally requires expert knowledge
and untestable assumptions about the causal network
linking exposure, outcome and other variables (10).
A causal diagram can be constructed by abstracting the
causal assumptions embedded in a narrative descrip-
tion of the hypothesized relations among the study vari-
ables.
To illustrate the idea, consider in Figure 1 a causal di-
agram illustrating the hypothetical relationship between
high maternal alcohol use in pregnancy (AL) and low
intelligence quotient (IQ) scores in childhood. 
In estimating the causal effect of high prenatal alcohol
exposure on IQ at age 5, we also consider the effects
of socioeconomic status (SES), being born small for
gestational age (SGA), smoking during pregnancy (SM)
and other unmeasured factors (U).Unmeasured variables
might include genetic factors associated with cognitive
and behavioural outcomes in the mother which are in
turn related to low IQ in the child and also environ-
mental factors such as poor maternal rearing behaviours
which are associated with poor quality of the postna-
tal environment leading to low IQ score at age 5. 
Although residual confounding due to the unmeasured
factors is of considerable importance in consideration
of this association, a review of the literature suggests
that such factors are extremely difficult to measure and
therefore seldom measured. 
For the purpose of this example we will ignore these
factors and assume that they will not confound the es-
timate of interest. 
In the terminology of causal diagrams, variables in the
graph are called nodes or vertices and any line or ar-
row connecting two variables is called an arc or an edge.  
The arrows represent causal relations; whenever the ar-
row is lacking we assume that there is no direct causal
relations.
A variable X affects a variable Y directly if there is an
arrow from X to Y. 
A variable X affects Y indirectly if there is a head to
tail sequence of arrows from X to Y.  
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For example in Figure 1, SES affects SM directly and
IQ indirectly.
A path between two variables is any noncrossing and
nonrepeating sequence traced out along edges starting
with a variable and ending with another one, regard-
less of the direction of arrowheads. 
For example the succession of arrows between AL and
SGA is called the path between AL and SGA.
Directed paths are the special case in which all the edges
in the path flow head to tail.  
Any other path is an undirected path.  
In Figure 1, the path AL-SGA-IQ is directed, but AL-
SES-SGA-SM-IQ is not.
A variable is said to be a child of another variable if it
is caused by this variable, i.e in figure 1, AL is a child
of SES and U; conversely SES and U are parents of A. 
More generally, the descendents of a variable X are vari-
ables affected, either directly or indirectly, by X. Con-
versely, the ancestors of X are all variables that affect
X directly or indirectly. 
In Figure 1, SES has three children (AL, SM, SGA) and
four descendents (AL, SM, SGA, IQ); and IQ has four
parents (U, AL, SM, SGA) and five ancestors (U, AL,
SM, SGA, SES). When tracing out a path, a variable
on the path where two arrowheads meet is called a col-
lider on that path (→C←). In Figure 1, SGA is a col-
lider on the path from SM to SES. 
A path is said to be open or unblocked or active un-
conditionally if there is no collider on the path. Other-
wise, if there is a collider on the path, it is said to be closed
or blocked or inactive and the collider blocks the path. 

In Figure 1 the path AL-SES-SGA-SM-IQ is a blocked
path because it collides at SGA, whereas the path AL-
SES-SM-IQ is open. 
Associations can be propagated only across a noncol-
lider (→C→ or ←C→) on a path.  Metaphorically, it
is possible to think of associations as water flowing
through the graph: water can flow along some open (un-
blocked) paths but not along closed (blocked) paths (11).
But the open and closed paths are switched by condi-
tioning (stratifying) on the variable. 
In other words, stratifying on a variable which is a non-
collider closes the path (stratifying or conditioning is
like to place a valve at the node that make it impossi-
ble for water to flow), whereas stratifying on a collid-
er opens the path. 
Then, associations can be propagated across a non-
collider unless we do completely stratify on it, asso-
ciations can be also transmitted across a collider if we
stratify (condition) on it or a descendant of the collid-
er itself. 
It is not necessary to include all causes of variables in
the diagram but it is important to include any key vari-
ables, otherwise causal graph interpretations can be se-
verely misleading. 
That is to say, selection of variables for modelling us-
ing causal graphs does not preclude the need to con-
sider unmeasured confounders. 
When variables have not been measured, it is helpful
to denote pathways in and out of their node by dashed
edges. In figure 1, U means the presence of unmeasured
variables that cause both AL and IQ. All the graphs are

Directed Acyclic Graphs and Causal Inference

BIOMEDICAL STATISTICS AND CLINICAL EPIDEMIOLOGY 2009; 3 (2): 89-96 91

Figure 1. Causal diagram
illustrating the hypotheti-
cal relationship between
high maternal alcohol use
in pregnancy and low in-
telligence quotient.
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considered acyclic which means they contain no feed-
back loops; this means that if a variable X causes Y,
Y cannot also cause X at the same moment (that is, no
variable can cause itself). For this reason causal dia-
grams are also called directed acyclic graphs. Exten-
sion to time dependent variables can relax this as-
sumption (12).

Using DAGs to graphically represent 
confounding

One of the most attractive features of a causal graph
is that it allows one to describe the causal structure that
gives rise to confounding: in this setting, confounding
is defined as the bias that arises when the exposure and
the outcome share a common cause.
In graph theory, a path like E←C→D that links E and
D through their common cause C is referred to as a
backdoor path (Figure 2). 
More specifically, undirected paths from E to D are
termed back-door (relative to E) if they start with an
arrow pointing into E (i.e, E←C). 
Then confounding can be defined as the presence of a
common cause (C) of the exposure E and the outcome
D, or, equivalently, the presence of an unblocked back-
door path between E and D.
To better understand this concept, let us consider Fig-
ure 2. 
If the common cause C did not exist, then the only path
between exposure and outcome would be E→D, and
thus the entire association between E and D would be
due to the causal effect of E on D. But the presence of
the common cause C creates an additional source of as-
sociation between the exposure E and the outcome D,
which we refer to as confounding for the effect of E on
D.
A back-door path is blocked if it contains a collider and

unblocked if there is not a collider on the path. In fig-
ure 2 the path E-C-D is an unblocked back-door path. 
In Figure 1 the path AL-SES-SGA-SM-IQ is a blocked
backdoor path because it collides at SGA. 
In contrast the path AL-SES-SGA-IQ is an unblocked
back-door path because neither SES nor SGA are col-
liders on this path.
In a DAG all unblocked back-door paths are biasing
paths.
In order to identify the causal effect of an exposure E
on an outcome D, all the back-door paths between the
two variables must be blocked. 
In Figure 2 to identify the causal effect of E on D, the
back-door path between the two variables must be
blocked stratifying or conditioning on C.
We graphically represents the controlling (eg, regres-
sion adjustment, stratification, restriction) by placing
a box around the controlled variable (Figure 3).
Conditioning on C closes the path and removes C as
a source of association between E and D.
In other words stratifying on a single variable (which
is a noncollider) is equivalent to removing that variable
or node from the graph. 
An important subtle idea arises when colliders are in-
cluded in a set of stratifying variables because con-
trolling for a collider can open biasing path.
As we report above the open and closed paths are
switched by conditioning (stratifying) on the variable.
This means that in Figure 4 if we seek to remove con-
founding by stratifying the population solely by C
(thereby removing this node), a new pathway is inad-
vertently opened between E and D (the new pathway
is indicated in Figure 4 as a dashed non-directional arc). 
When, as in reality, there are complex DAGs, a sim-
ple graphical algorithm called the “back-door
criterion” allows researchers to determine whether con-
founding exists and whether a set of measured variables
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Figure 2. Causal graph indicating the presence of con-
founding due to an unblocked backdoor path from E to D.

Figure 3. Causal graph indicating the absence of confound-
ing after controlling for C.
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S is sufficient to identify (validly estimate) the causal
effect of X on Y.
To determine whether confounding exists, we follow
two simple steps. Given any DAG:
1. Delete all arrows from exposure (that is exposure

effects);
2. In this reduced graph, determine whether there is

any unblocked backdoor path from the exposure to
the outcome. If such a path exists, the causal rela-
tionship is confounded by the effects of the other
variables; if there is no such path, there is no con-
founding.

Because now we understand the implication of strat-
ification by a collider, it is possible to use a graphical
algorithm for checking whether a set of variables is suf-
ficient for adjustment. 
This algorithm is known as the “backdoor test for suf-
ficiency”. 
Given a subset S={S1,…..Sn} of variables that contain
no descendant of the exposure or the outcome, the steps
are as follows:
1. Delete all arrows from exposure (that is exposure

effects);
2. Draw undirected arcs to connect every pair of vari-

ables that share a child that is either in S or has a
descendant in S (that is, put in all arcs generated by
control of S); 

3. In the new graph, determine whether there is any
unblocked backdoor path from the exposure to the
outcome that avoids passing through any node in
the set of stratification factors. If no such path is
found, confounding is controlled by the proposed
factors; if there is such a path, stratification by these
factors is not sufficient to remove all confounding.

Applying the “back-door criterion” to Figure 4, we can
easily identify if there is confounding between E and D.
Because there are three unblocked back-door paths (E-
A-C-D, E-C-B-D and E-C-D), it is necessary to adjust.
The backdoor test for sufficiency allows us to answer
the question: what is the smallest subset from the co-
variates A, B and C that would be sufficient for ad-
justment to estimate the effect of E on D?
C alone is not sufficient because after removing the ar-
row coming from E and after linking every pair of vari-
ables that share a child or a descendant in S (in this case
the set of variables S is only C), a new unblocked back-
door path E-A-B-D is created. 
While S={C, A}, or S={C, B} are sufficient. 
Applying the backdoor test algorithms to the DAGs in
Figure 1, we are now able to answer the research ques-
tion: is there any confounding in the association between
alcohol in pregnancy and IQ? In order to apply the
“back-door criterion” to Figure 1, we have to delete all
lines emanating from AL, then check if there is any un-
blocked backdoor path from the exposure to the out-
come. 
After deleting all exposure effects, there are four un-
blocked backdoor paths: AL-SES-SM-IQ, AL-SES-SM-
SGA-IQ, AL-SES-SGA-IQ, AL-U-IQ (see Figure 5).
Because there is confounding, we could decide to con-
trol for SES.
The “backdoor test for sufficiency” allow us to answer
to the question: is conditioning on SES sufficient to es-
timate the causal effect of alcohol in pregnancy (AL)
on intelligent quotient (IQ) scores at age 5? 
Given S={SES}and according to step 2 of the “back-
door test for sufficiency” we should add undirected arcs
connecting every pair of variables which share a
child that is either in SES or has a descendant in SES
(step 2). Nevertheless, as SES is not a child or a de-
scendant of any other variables, we do not need to add
undirected arcs. Finally we have to determine if there
is any unblocked backdoor path from AL to the IQ that
avoids passing through S (step 3). 
As any path is found (because after conditioning on
SES, the open paths AL-SES-SM-IQ, AL-SES-SGA-
IQ, AL-SES-SGA-SM-IQ have been blocked), ad-
justment for SES alone is sufficient to remove all con-
founding (apart the confounding due to U that remains
unknown) (Figure 6).  
Note that, while it is sufficient to adjust for SES alone,
it is not sufficient to control only for SM or SGA. It is
also correct to control for {SES, SGA}, {SES, SM},
{SGA, SM} or {SES, SM, SGA}.

Directed Acyclic Graphs and Causal Inference
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Figure 4. Causal diagram illustrating the consequence of
conditioning for C.
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Knowing that confounding can be removed when we
control solely for SES it is particularly valuable in
case it is difficult to collect information on SGA or
SM. 

Conclusions

Directed acyclic graph models were developed as a the-
ory of statistical causal inference.  
We reckon, as Dawid warns (13), that there is more and

more in need of explicit, methodological and philo-
sophical justification to use them to explain causal re-
lationships.
But we believe they are a powerful tool to help re-
searchers to choose which covariates should be included
in traditional statistical approaches in order to minimize
the magnitude of the bias in the estimate produced (14).
Furthermore, they are a graphical tool to display the web
of causation that is not captured by statistical conven-
tional models. 
Although this manuscript is limited to how to select vari-

Figure 5. Back-door crite-
rion applied to the DAG
of the relationship be-
tween maternal alcohol
use in pregnancy and low
intelligent quotient (IQ)
scores at age 5.

Figure 6. Back-door test
for sufficiency applied to
the DAG of the relation-
ship between maternal al-
cohol use in pregnancy
and low intelligent quo-
tient (IQ) scores at age 5.
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ables which require adjustment using back-door cri-
terion, DAGs can be also used for distinguishing and
reasoning about selection bias (15). 
As in fact Greenland pointed out, another advantage of
using causal diagrams is they are the easiest way to re-
member the logic of biases. 
Critical points are the difficulty of reporting the structure
of the effect modification and the absence of quantification
of the associations involved (i.e. if X is a strong cause of
Y and a weak cause of Z, this information is lost in a DAG
in which Y and Z are simply children of X). 
Though causal diagrams are a useful tool to think con-
ceptually about a causal inference problem, there is a
need for research in which DAGs and quantitative ap-
proach are explored together.
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Appendix

Why conventional rules for confounding 
are not always reliable

In Figure 7 we reported an example from the Chapter
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Figure 7. A DAG under
which traditional con-
founder-identification
rules fail
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“Causal Diagrams” in Modern Epidemiology  to il-
lustrate why conventional rules for confounding are not
always reliable.
The Figure reflects the assumptions that maternal di-
abetes is associated with the subject’s education via
the common cause Z1 “family income” (the reason-
ing is that if a subject was poor as a child, his or her
mother was poor as an adult, and this poverty also in-
creased the mother’s risk of developing diabetes).  So,
the first traditional requirement  for confounding is
satisfied.
Maternal diabetes is associated with the subject’s di-
abetes via the common cause Z2, the genetic factor. The

second traditional criteria is satisfied. Maternal diabetes
W is not affected by exposure X or outcome Y. The third
traditional requirement is satisfied.
According to the traditional definition, to estimate if
educational attainment affects the risk of type II dia-
betes, we should adjust for W.
Differently, according to the graphical criteria, we do
not need to adjust for mother’s diabetes because the path
between X to Y is already blocked at W and then it is
not a biasing path.
Conditioning on W alone opens the confounding path
X-Z

1-W-Z2-Y, in this sense adjustment for W would be
one form of overadjustment.
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