
1. Generation of data

In this example the relationship between the dependent
variable (response) (Y)  and the independent variable
(regressor) (X) is postulated to be: Y = X. 
It is assumed that the regressor X has six values
(i=1,2,3,4,5,6) and, for each X value, there are four re-
plicates of the response Y (j=1,2,3,4); furthermore the
error variance (σ

i
2) increases together with the X va-

lues. By using small letters to specify the empirical rea-
lizations of random variables, the model used to generate
the data results to be:

[1]

where the random errors εij
~N(0,1) were obtained by

means of the rnorm function of software R.
The computer clock was used to specify the seed.
It is easy to see that

[2]

Table 1 specifies both the values of Xi
and used

to generate the set of 24 data to be processed in this exer-
cise. 

The range of σ
i

values is in accord with the rule of
thumb suggested by Carroll and Ruppert ((1), p.16): if
the standard deviations s

i (estimates of σi) differ by a
factor of 3:1 or more, then weighting will generally be
called for; whereas if the s

i
do not vary by a factor of

1.5:1, then weighting would not be necessary. Values
of ε

ij
obtained by the rnorm function, multiplied by σ

i
,

and the corresponding y
ij obtained according to [1] are

reported in table 2, third and fourth column respecti-
vely; the fifth column gives the means (y–

i) for every Xi

together with the corresponding sample variances s
i
2

(sixth column). Values of σi
2 are reported in the seventh

column.
Comparing columns 5 with 2, the mean estimates ap-
pear to differ slightly from the corresponding µ

i
, ex-

cept for the fifth subset, in which y–
i
tends to undere-

stimate µ
i
. On the contrary, comparing columns 6 with

7 it appears that σi
2 are poorly estimated by si

2, which
are all based on 3 degrees of freedom (d.f.) only. As a
matter of fact Carroll and Cline (2) assert that the num-
ber of replications for each group (i=1,2,…,I) should
be at least 10, to get reasonable estimates of σi

2; ho-
wever, in many biological analyses, such a number of
replications could be prevented by practical (econo-
mical) reasons.
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Table 1. Values of X
i
and σ

i
used to generate the set of 24 data.© C
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2. Regression Models and Results

2.1 Ordinary Least Squares (OLS)
All the above information concerning the genesis of data
is not available to the analyst interested in estimating
the simple linear relationship between Y and X. The first
step of the analysis consists in drawing a scatter plot
of the data as reported in figure 1, panel (a). The lat-
ter points out a linear relationship between Y and X and,
in the meantime, raises doubts about the assumption
of homoschedasticity. Nevertheless it seems sensible
to start the analysis under this assumption in order to
compute the diagnostics suitable to investigate whether
the assumption is tenable or not. Thus the following mo-
del is fitted:

[3]

where σ is a scale factor common to every i. 

The estimates of β0 and β1 are obtained by minimizing
(with respect to β0 and β1) the residual sum of squares: 

[4]

The estimate of σ2 is the residual mean square (RMS): 

The estimated coefficients of the model are: β
0
= 0.1842,

β
1

= 0.9085.
They were obtained by means of the function lm of soft-
ware R.
Note that 0.1842 → β0 = 0 and 0.9085 → β1 = 1, whe-
re → means “is estimate of”.
The RMS = 6.4742, based on 22 d. f. is an estimate of

. 
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Table 2. Simulated data with some pertinent statistics.
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The residuals e
ij

are estimated by ê
ij

= y
ij

– ŷ
ij

= 
y

ij
– β̂0 – β̂1xi

To examine the appropriateness of model [3], the ana-
lyst would like to have the true residuals e

ij
available

for study. But, since he only actually gets the estima-
te ê

ij
, he can study only whether or not the fitted mo-

del β̂0 + β̂1xi
matches the data. 

It is known that the residuals ê
ij

have different standard
errors; to make them comparable each ê

ij
must be di-

vided by its own standard error obtaining the so cal-
led  “standardized” residuals: 

where h
ij

is the pertinent term on the diagonal of the
Hat matrix (see Sen and Srivastava, (3), p.107). In the
case of simple linear regression: 

[5]

where

With regard to our example the ê’
ij

are reported, against
the corresponding predicted values ŷ

ij
, in panel (b) of

Figure 1. The “fan shape” pattern confirms that the va-
riability within groups increases with mean response,
so the constant variance assumption in [3] is inappro-
priate.

As previously noted, when the sample size is small s
i
2

are poor estimates of σ
i
2. As an alternative one could

compute the average squared error (ase) for each group
(i=1,2,…,I):

.

It is expected that the average squared error is prefe-
rable to s

i
2 as a measure of within group variability, be-

cause the latter is equivalent to using ŷ
ij

= y–
i
, not taking

advantage of the postulated relationship between Y and
X. In the present example the average square errors are
respectively ase1 = 0.7257; ase2 = 0.6835; ase3 = 6.0345;
ase4 = 4.6543; ase5 = 4.9780; ase6 = 18.5321.

2.2 Weighted Least Squares (WLS)
Now the model is: 

[6]

where σ
i
is a scale factor specific to each i.

In equation [3] all the points to be fitted receive the same
weight=1/N, as a result of the homoschedasticity as-
sumption. On the contrary in the presence of hetero-
schedasticity, each point must be weighted so that points
for which σ

i
2 is comparatively large should be dow-

nweighted: in general the weights (w
i
) should be the re-

ciprocal of the variance. 
Let’s rewrite model [6] multiplying all its terms by

From ordinary to generalized least squares: a worked example
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Figure 1. Scatter plot of y
ij

against x
i
(a); Scatter plot of standardized residuals ê

ij
against predicted values ŷ

ij
(b).
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It becomes

[7]

The sum of squares to be minimized is now: 

[8]

From the previous section it appears that three alter-
natives to compute the weights are available:

in practice this approach can rarely be
used because the true value of the va-

riance of each group is usually unknown. 

this approach appears to be “naïve”
when there are few replicates (<10) for

each group, like in the present example.

this approach appears to be “naïve”
when there are few replicates (<10) for

each group, like in the present example.
All these weights are reported in table 3. Notice that
to construct weights 2, s

i
2 are multiplied by ¾, to ren-

der the direct comparison of them with weights 3 pos-
sible.
The results obtained by weighted least squares re-
gression analysis (function lm of software R with op-
tion weights) are reported in rows 2, 3 and 4 of table
4; for completeness, in the first row the results of OLS
regression are given.
As expected it appears that the estimated standard er-
rors of the coefficients obtained with WLS method are
smaller than the corresponding values obtained with
OLS method. As the weights are inversely proportio-

nal to the variances of each group, the σ–2 = 5.79 is ex-
pected to reduce to σ–2

weighted = 1; the latter is estimated
by WLS_1, WLS_2, WLS_3 as: 0.9704, 1.1403,
1.0902 respectively. 
Let’s consider WLS_1 model: RMS = 0.9704 is the con-
stant variance for the transformed variables Y· √

⎯
w

i
; thus

to obtain the estimated variances of each group in the
original scale one must divide RMS by the corre-
sponding weights.

2.3 Modelling the variance: 
Generalized Least Squares (GLS)
The basic idea is to model the variance as a function
of the mean and possibly of other factors specific to the
process generating the data. Among the several models
suggested by Davidian and Giltinan ((4), p.23) the sim-
plest one called “Power Of Mean” POM will be con-
sidered here. 
The POM model implies:

[9]

where γ is a scale parameter and γ is an unknown pa-
rameter to be estimated.
According to Davidian and Giltinan ((4), p.23): “…the
scale parameter γ governs the overall level of precision
in the response, while the variance parameter θ speci-
fies fully the functional form.”
The regression model is now:

[10]

For θ = 0 model [10] reduces to model [3].
For θ = 1_2 and γ = 1, σ

i
2 = Var(Y

ij
) = µ

i
so Y

ij
is distri-

buted according to a Poisson distribution.
For θ = 1 σ

i
= γµ

i
; this implies that γ = 

σ
i–µ
i
and conse-

quently γ corresponds to the coefficient of variation.
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Table 3. Different kinds of weights (see text).

(1) (2) (3) (4)
i Weights1 Weights2 Weights3

1 1.0000 1.4447 1.3780
2 0.4444 1.5769 1.4630
3 0.2500 0.1662 0.1657
4 0.1600 0.2285 0.2149
5 0.1111 0.2171 0.2009
6 0.0816 0.0541 0.0540

Table 4. Results of OLS and WLS regression analysis.
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In order to investigate the role of θ in determinating γ,
the following exercise appears to be useful. Assume that
θ is known and takes values: θ = 0.5 and θ = 1 re-
spectively. Furthermore we consider two alternatives
regarding µ

i
; a priori known µ

i
= X

i
(as results from [2])

and the estimate of µ
i
: µ̂

i
= β̂0 + β̂1xi

. The weights be-
come now: w

i =  1—µi
2θ. The results pertinent to these four

scenarios (GLS_1-GLS_4) are reported in table 5.
From table 5 one can observe that: 
1) Comparing the results in row 2 with those in 1 and

in row 4 with those in 3 it appears that they are very
similar; this was expected since the OLS estimates
of β̂0 and β̂1 (used to compute µi) are known to be
unbiased.

2) Comparing row 2 of table 4 with row 3 of  table 5
the estimated coefficients as well as their standard
errors are exactly the same; the ratio of the two RMS
is 4:1, since the weights used in table 4 (row 2) were
a quarter of those used in table 5 (row 3).

3) The values of mean square tend to decrease as long
as the values of θ tend to increase. 

In practice θ is unknown and must be estimated from
the data. First of all, a graphical display should be drawn
for evaluating the appropriateness of the variance mo-
del. Briefly, by taking logarithms, equation [9] can be
rewritten: log(σ

i
) = log(γ) + θ log(µ

i
).

Since σ
i
and µ

i
are unknown one needs a substitute for

each and can regard log(| e
ij

|) as a substitute for log(σ
i
)

and log(ŷ
ij) as a substitute for log(µi). Thus, by regressing

log(| e
ij

|) against log(ŷ
ij
) one can see if a strong straight

line relationship is indicated. As regards our example
the plot of log(| e

ij |) against log(ŷij) is given in figure
2 with the relative regression line. 
One could think of using the slope and the intercept of
this straight line as estimates of θ and log(γ) respecti-
vely. However, Davidian and Haaland (5) “…recom-

mend against using the relationship demonstrated by
these plots to estimate the parameters θ and γ of the va-
riance function;…”. As an alternative they suggest to
resort to an iterative method having better statistical pro-
perties. It is based on the following steps:
1) Obtain the OLS estimate β̂

OLS
. Let β̂(0) = β̂

OLS 
and set

k=0.
2) Obtain the estimate of θ (k) as shown in section 4.1

reported by Davidian and Haaland (5). 
Form estimated weights ŵ

i=  
1—

µ̂i
2θ̂(k)

where µ̂i = β0
(k) + β0

(k)x1

3) Use the estimated weights from 2) to obtain β̂
GLS

by
minimizing [8].

4) Set k=k+1, let β̂(k) = β̂
GLS

and return to 2)
The method is called Generalized Least Squares because
the weights are estimated.  
The package calib of software R takes advantage of this
algorithm to estimate parameters for both linear and non
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Table 5. Results of GLS regression analysis

Figure 2. Scatter plot of log(| eij |) against log(ŷij) with the
corresponding regression line.
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linear (logistic) regression models, with heterosceda-
stic variances modelled in terms of POM.  
In calib γ is estimated as 

[11]

where p is the number of estimated parameters.
In a strict sense γ̂ can be interpreted like a coefficient
of variation only when θ̂ =1 in equation [11]; however
loosely it is thought like a coefficient of variation even
when θ̂ =/ 1.
The results of fitting [10] through version 0.1.02 of pac-
kage calib are reported in the fifth row of table 5.
The estimates θ̂ = 1.2385 and γ̂ = √

⎯
0.1347 = 0.367 ena-

ble us to compute σ̂i(POM) , which are reported in the last
row of table 6. These appear to be very good estima-
tes of the pertinent σi

.

3. Final comments

1) The standardized residuals (not given here) of
WLS_1, WLS_2 and WLS_3 models show that the
heteroscedasticity condition in the raw data has been
satisfactory removed. Therefore it appears that wei-
ghting enables fulfilling the basic assumptions to
compute confidence intervals of β0 and β1 and to
test null hypothesis on β0 and β1.

2) Let’s consider the column “mean square” in tables
4 and 5.
For the data in this example, σi

=  1—
2

x
i
=  1—

2
µ

i
; for

POM model σi =γµi
θ. In computing the weights for

WLS_1 it was assumed that both γ and θ were
known, namely: γ =  1—

2
and θ = 1. So the weights

were wi
=  4—µi

2. Therefore the RMS obtained with this
WLS_1 model was an estimate of Var(εij) = 1. On
the other hand if one assumes that only θ is known
and is equal to 1, the weights are: wi

=  1—µ
i
2 and the

RMS of GLS_3 is estimate of γ 2·Var(εij), but being
the latter equal 1, this RMS reduces to be an esti-
mate of γ 2 = 1—

4
= 0,25. In the present example

RMSWLS1 = 0.9704, whereas RMS
GLS3 = 0.2426; as

expected RMSWLS1 = 4·RMS
GLS3. However, both the

estimates of the parameters and their pertinent stan-
dard errors furnished by WLS_1 and GLS_3 are
identical.

3) By observing “mean square” column of table 5 it
appears that the values of θ influence inversely the
estimation of γ 2. Furthermore being θ̂ given by POM
model >1, the corresponding γ 2 is the smallest one,
implying the maximum level of estimated precision.

4) Consider now the problem of determining the va-
lue of a future observation ỹ0 at the point x0. For wha-
tever value x0 included in the range of X, ỹ0 =
β0+β1x0+e0. Such a ỹ0 is estimated by ŷ̃0 = β̂0+β̂1x0.
Under the assumption of homoschedasticity it can
be shown (see Sen and Srivastava, (3), p.71) that the
standard error of ỹ0 is given by:

[12]

where, coherently with [5], 

Note that the first term of equation [12] accounts for
the random error e0 and the second one reflects the un-
certainty in estimating ŷ̃0 by means of β̂0 and β̂1.
In the case of POM model, according to Davidian and
Giltinan ((4), p.291), the standard error of ỹ0 is estimated
by:

where
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Table 6. True and POM estimated values of the standard deviations for each group.© C
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Note that, in the case of heteroschedasticity, the first
term of S.E.(ỹ0): √

⎯
γ̂ 2µ̂0

2θ̂ properly accounts for the
variance as modelled by the variance function adop-
ted.í
Unfortunately the WLS approaches developed in sec-
tion 2.2 do not enable modelling the variance. Thus in
the presence of heteroscedasticity they can be used to
obtain unbiased estimates of β0 and β1 together with their
standard errors, but they fail in estimating the varian-
ce of a future observation and, consequently, in solving
the problem of “calibration” ((4), p.276) in hetero-
schedastic biological settings.
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