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Summary

Objectives. To compare risk-adjustment methods commonly used to determine the outcome indicators of either a logistic
or multilevel regression, given the following hierarchical structure of hospital data: patients (first level), specialist ward
(second level), hospital (third level). The effect of the subsequent risk-adjustment was evaluated by two mortality indica-
tor indices, as proposed by the Agency for Healthcare Research and Quality (AHRQ), Inpatient Quality Indicators num-
ber 16, (congestive heart failure, IQI16) and Inpatient Quality Indicators number 17, (stroke, IQI17), using as reference
population the hospital admissions of the Apulia Region, and applying the coefficients supplied by AHRQ.

Methods. Two regression models, multilevel and logistic, were applied on hospital admissions for congestive heart failure
and stroke in the Apulia during the period 2001-2005. The relevant regression coefficients have been compared using the
Wald test. The level effects were evaluated by means of an intraclass correlation coefficient (ICC). The risk-adjusted mor-
tality rates utilised for the comparison were determined on admissions in 2006.

Results. For IQI16, the Wald test gave contrasting results for the variance-covariance matrix used. The multilevel model ex-
plained a high variability among second and third level units, with ICCs of 33.31% and 12.88%, respectively. For IQI17, the
Wald test showed a significant difference between the regression coefficients of the two models. The ICCs of the second and
third level units were 47.41% and 6.15%, respectively. The risk-adjusted rates were different: the AHRQ score was 4.36%
and the Apulian score 3.15% for 1QI16; the AHRQ score being 11.2% and the Apulian score for IQI17 being 7.89%.
Conclusions. It is essential to correctly define both the variables in the adjustment model and in the reference population
so that the latter is matched to the population under study. We do this in order to obtain outcome indicators that truly re-
flect the sought-after situation in the larger population, and to avoid model-level bias.

KEY WORDS: risk adjustment, multilevel model, hospital mortality rate.

A model which is easy to apply to the INHS is the
one developed in the USA by the Agency for Health-
care Research and Quality (AHRQ) that is used to

Introduction

The frequent changes in the Italian National Health

Service (INHS) and the decline in nationally-avail-
able resources have made it necessary to accomplish
etfective monitoring of Italian healthcare providers,
in order to control the consequences visited upon the
public welfare.

Two important projects have been performed in Italy,
aimed at evaluating the performance of healthcare
providers and to study the outcomes indicators (1, 2).
Much research, now well-consolidated and -under-
stood, has also been previously conducted in this
field on an international setting (3, 4).

determine Inpatient Quality Indicators (IQI). These
first level indicators can be calculated using hospital
patient discharge databases alone, and allow assess-
ment of the:

* volume of activity;

* mortality rate for each procedure;

 mortality rate per each principal diagnosis;

e rate of use of specific procedures.

Risk adjustment procedures are applied to evaluate
how an indicator such as the mortality rate can be bi-
ased by casemix on the part of healthcare providers.
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These methods should be used, particularly in retro-
spective studies, to adjust rates for the different dis-
tribution of the individual risk factors when assum-
ing that patients have the same level of risk. The dif-
ferences observed between the unadjusted rate and
the adjusted rate would thus be attributable only to
the different quality of care, rather than to the effect
of residual variability.

Risk adjustment procedures are based on a multivari-
ate regression model whose covariates (age, sex, and
severity of the patient’s condition) can be considered
risk factors for occurrence of the event (e.g. death).
Their relative coefficients are estimates of a changed
rate of occurrence of the event depending on varia-
tions of the risk factors.

In the first version of the freeware from the AHRQ
(V.2.1), a linear regression model was used, its pa-
rameters were estimated by the ordinary least
squares method and the continuous dependent vari-
able was assumed to be normally distributed. How-
ever, the indicators under analysis are very often di-
chotomous, discrete variables (e.g., alive/dead),
with an underlying binomial distribution, so it was
considered preferable to use a logistic regression
model. (AHRQ freeware Version 3.0 (2006)). Nev-
ertheless, the logistic regression model does not ac-
commodate well to the hierarchical nature of the
data in health management databases (e.g., hospital,
specialist unit); therefore a multilevel model was
later concluded to be more structurally suitable.
The application of a multilevel regression model is,
in fact, advisable when it is reasonable to assume that
the variability of the phenomenon depends not only
on individual explanatory variables (first level), but
depends also on a given individual belonging to a
particular group (second level unit) endowed with
special, distinguishing characteristics. The latest ver-
sion of the AHRQ software (V.3.1) relies on a hierar-
chical model to determine the coefficients to be used
in risk adjustment, using the hospital as the random
effect (http://www.qualityindicators.ahrq.gov/newslet-
ter/2007-February-AHRQ-QI-Newsletter.htm#_
Workgroup_on_30-Day).

The object of our study was to verify the appropri-
ateness of the multilevel logistic model as com-
pared to the simpler logistic model. In our hospital
patient discharge database structure, a patient (first
level) is automatically assigned to the specialist

ward discharging the patient (second level), which
in turn is assigned to the admitting hospital (third
level). To evaluate the effect of the reference popu-
lation on the risk adjustment procedure, a score
vector was also determined using hospitals admis-
sions data from the Puglia Region. Adjusted mortal-
ity rates obtained with AHRQ scores were com-
pared with those found using the scores obtained
for the Puglia reference population. Among the in-
dicators proposed by the AHRQ, we additionally
adopted the following two: IQI16 (mortality rate for
congestive heart failure) and 1QI17 (mortality rate
for acute stroke).

Method

Data utilised

The risk adjusted indicators were determined for
hospital discharges (inpatients) in the year 2006, in
Puglia, a Region in South Italy. Patients were select-
ed on the basis of having either the discharge diagno-
sis of congestive heart failure for IQI16 or stroke for
IQI17, this nomenclature being taken from the corre-
sponding ICD9-CM codes, as indicated in the AHRQ
manual (Table 1).

To obtain the parameters scores vector used in the
risk adjustment procedure, the regression model was
applied to the Puglia hospital discharge (PHD) data-
base for the period 2001-2005, defined as the refer-
ence population.

Statistical analysis

The risk adjustment procedure consists of the follow-

ing phases:

* fitting of the regression model to the reference pop-
ulation;

e determination of the regression coefficients, de-
fined as scores, for each covariate;

e application of the previously determined scores to
observations of the population under study (PHD
2006);

* calculating the risk-adjusted hospital rates in the
population under analysis.
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Table 1. Diagnosis Codes ICD9-CM for the selection of the indicators IQI16 and IQI17.

Congestive heart failure (CHF) mortality rate (IQI 16)

Acute stroke mortality rate (IQI 17)

Numerator: Number of deaths among cases meeting the
inclusion and exclusion rules for the denominator.

Numerator: Number of deaths among cases meeting the
inclusion and exclusion rules for the denominator.

Denominator: All discharges, aged 18 years and older,
with a principal diagnosis code of CHF.

Icd-9-Cm Chf Diagnosis Codes:

39891  Rheumatic Heart Failure

40201  Mal Hypert Hrt Dis W Chf
40211  Benign Hyp Hrt Dis W Chf
40291  Hyperten Heart Dis W Chf
40401  Mal Hyper Hrt/Ren W Chf
40403  Mal Hyp Hrt/Ren W Chf&Rf
40411  Ben Hyper Hrt/Ren W Chf
40413  Ben Hyp Hrt/Ren W Chf&Rf
40491  Hyper Hrt/Ren Nos W Chf
40493  Hyp Ht/Ren Nos W Chf&Rf
4280 Congestive Heart Failure

4281 Left Heart Failure

42820  Systolic Heart Failure Nos Oct02
42821  Ac Systolic Hrt Failure Oct02-
42822  Chr Systolic Hrt Failure Oct02-
42823  Ac On Chr Syst Hrt Fail Oct02-
4289 Heart Failure Nos

42830  Diastolic Hrt Failure Nos Oct02-
42831  Ac Diastolic Hrt Failure Oct02-
42832  Chr Diastolic Hrt Fail Oct02-
42833  Ac On Chr Diast Hrt Fail Oct02-
42840  Syst/Diast Hrt Fail Nos Oct02-
42841  Ac Syst/Diastol Hrt Fail Oct02-
42842  Chr Syst/Diastl Hrt Fail Oct02-
42843  Ac/Chr Syst/Dia Hrt Fail Oct02-

Excluded cases:

* missing discharge data

e transfer to another short-term hospital

* MDC 14 (pregnancy, childbirth, and puerperium)
* MDC 15 (newborns and other neonates)

Denominator: All discharges, aged 18 years and older,
with a principal diagnosis code for stroke.

Icd-9-Cm Stroke Diagnosis Codes:

430 Subarachnoid Haemorrhage
431 Intracerebral Haemorrhage
4320 Nontraum Extradural Hem
4321 Subdural Haemorrhage
4329 Intracranial Haemort Nos
43301  Basi Art Occl W/ Infarct
43311 Carotd Occl W/ Infrct
43321  Vertb Art Ocel W/ Infrct
43331  Mult Precer Ocel W/ Infrct
43381  Precer Occl Nec W/ Infrct
43391 Precer Occl Nos W/ Infrct
43401 - Cere Thrombosis W/ Infrct
43411 Cere Embolism W/ Infrct
43491 Cereb Occl Nos W/ Infrct
436 Cva*

* Only for discharges before September 30, 2004. Does
not apply to discharges on or after October 1, 2004.

The first model used in the process of defining the
scores was the multiple logistic regression models:

A
i

K
logit (p) =a +2 B Xix (1]
k=1

where i indicates the /" individual and k indicates the
generic covariate.

The variables X,, as utilised in our regression model,
are the same as those of the AHRQ: sex, age subdivid-
ed into 14 groups, and sex by age interaction. These
variables are apart from those that more heavily weigh
and monitor the severity of the patient’s condition.

BioMEebicAL STATISTICS AND CLINICAL EPIDEMIOLOGY 2008; 2 (3): 243-254

The AHRQ software utilises the APR-DRG system
in adjusting the rates according to the severity of the
patient, however these severity indices were not
available in the PHD database.

The value of expected probability is given by:

exp(o: + EK:BK xik]

k=1

K
1+ exp(a + prxak)
k=1

p;= 0<p <1 [2]
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And the “adjusted” rate is:

Adjusted Rate = (Observed Rate /| Expected Rate)
* Average Population Rate [3]

We compared the results obtained with simple logis-
tic regression (LR) with those of a multilevel model
(ML), assuming a nested data structure of three vari-
ables and levels. The patients are the first level unit
(i), the specialist ward that the patient was dis-
charged from is the second level unit (j), and the hos-
pital is the third level unit (h).

The multilevel regression model used is then:

K
pin [ = a + E B Xuih + v, + uy + oy, [4]

k=1

logit

The residual ry, is specific to patient i in the special-
ist ward j of the hospital &. The residual u, is specif-
ic to the second level unit j in the third level unit &
and represents the difference between the general in-
tercept and the specific intercept of the speciality j in
the hospital A. Finally, v, is the specific residual of
the third level unit 4, which represents the difference
between the general intercept and the specific inter-
cept of the hospital. Once the parameters o and {3
have been estimated, it is possible to determine the
probability of the expected rate and to calculate the
adjusted rate by [3]. The score vector obtained with
the reference population was compared to that found
with the AHRQ. Both vectors were applied to the
population under analysis (PHD 2006), with the aim
of evaluating the influence that the reference popula-
tion has on the risk-adjusted rates.

Method for results comparison

The estimated parameters for each regression model
(LR and ML) follow an approximately normal distri-
bution. To ascertain if there were significant statisti-
cal differences between the two models, the Wald
test was applied:

WLog = (bl.ug- BMuI )T V?;l[,og(bl,ug- bMul)
) , ) ) \ (5]
wMu!l = (BLog- BMUI)I Vé]Mu[(BI,ug- BMul)

in which Bmg and BMul represent the estimated pa-
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rameters of the LR and ML models, respectively; and

-1 -1
Vi 1o, and Vjpy represent the inverse of the vari-

ance-covariance matrix of the LR and ML models’
regression parameters, respectively. Under the null
hypothesis that no statistically significant differences
exist between the two models, the Wald test statistic
is distributed according to a Chi-square with v de-
grees of freedom, where v represents the number of
explanatory variables used in the statistical model.
The intraclass correlation coefficient (ICC) was used
to estimate the mortality variability between the
groups as identified by the hierarchical model. This
coefficient represents .the proportion of variability
explained by the presence of clusters in the observed
populations (5, 6). The ICC approximation proposed
by Snijders and Bosker was used; this, in the case of
three levels, allows two ICCs to be calculated:

ICCZ“]eve] = 1:2/ (Tz + ‘C3 + ﬂ:z/3)
ICCropeye = T/ (T, + T3 + 7T/3)

where T, and T; are the estimated variances of the
random effect of the second and third level units on
the average, and m is the number 3.142.

The comparison between the LR and the ML models
was also carried out by calculating the difference be-
tween the hospital mortality rates (expected and ad-
justed), these rates obtained with the two models that
are using the risk adjustment procedure. The mean
and the variance of the difference between the mor-
tality rates was used to determine whether future use
of the ML model could explain higher proportions of
variability among hospital death rates, perhaps offer-
ing more precise estimates than what can be seen
with use of the LR model.

Results

There were 13,626 records with a discharge diagno-
sis of congestive heart failure (IQI16) and 4,959 with
a discharge diagnosis of stroke (IQI17) selected from
the PHD in the year 2006. There were 426 patients
discharged as “deceased” (the outcome of interest) in
the IQI16 category (3.13%), and 405 patients simi-
larly discharged in the IQI17 category (8.17%). Ta-
bles 2a and 2b show the distribution, by age class and
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Table 2a. IQI 16 (congestive heart failure mortality rate) - Mortality in the study population by age and gender (PHD 2006).

Logistic and multilevel models in the risk adjustment

Females Males
Age Patients Deaths % deaths Patients Deaths % deaths
18-24 4 0 0.00 5 0 0.00
25-29 5 0 0.00 15 0 0.00
30-34 9 0 0.00 16 0 0.00
35-39 9 0 0.00 29 1 345
40-44 29 0 0.00 60 0 0.00
45-49 41 1 244 120 4 3.33
50-54 97 1 1.03 151 1 0.66
55-59 189 1 0.53 345 4 I.16
60-64 294 3 1.02 434 7 1.61
65-69 635 10 1.57 717 19 2.65
70-74 1015 18 1.77 1029 20 1.94
75-79 1510 36 2.38 1323 46 348
80-84 1676 64 3.82 1268 39 3.08
85+ 1 646 103 6.26 955 48 5.03
Total 7159 237 3.31 6467 189 292

Table 2b. IQI 17 (acute stroke mortality rate) - Mortality of the study population by age and gender (PHD 2006).

Females Males

Age Patients Deaths % deaths Patients Deaths % deaths
18-24 7 0 0.00 3 0 0.00
25-29 8 1 12.50 15 1 6.67
30-34 6 0 0.00 9 1 11.11
35-39 15 1 6.67 27 2 741
40-44 20 1 5.00 38 3 7.89
45-49 56 4 7.14 61 3 492
50-54 54 2 3.70 93 5 5.38
55-59 82 0 0.00 134 7 522
60-64 119 9 7.56 209 15 7.18
65-69 185 13 7.03 340 16 471
70-74 318 29 9.12 397 24 6.05
75-79 515 42 8.16 479 49 10.23
80-84 501 39 7.78 411 37 9.00
85+ 570 60 10.53 287 41 14.29
Total 2 456 201 8.18 2 503 204 8.15

sex, in the PHD database of 2006 for IQI16 and
1QI17, respectively.

The IQI16 indicator

A very low frequency of death due to congestive
heart failure disease was found in our data sets in the
lower age groups (Table 2a). In multilevel models,
convergence problems can arise when the estimates
of the random components of the intercept are close
to zero (7). To overcome this, the covariates that ap-

pear only in classes with a low incidence, such as
ages between 18-39 years and one’s interaction with
sex, were eliminated. The same was done in the lo-
gistic regression model (LR) to make the two models
more comparable. Table 3 shows the estimated pa-
rameters of both models, the standard errors, their
significance and the components of the variance as-
sociated with the second (the specialist wards) and
third levels (the hospitals). In the ML model the vari-
ance components associated with the specialist ward,
O hiosprspec = 2036 (2=7.665; p<0.001), and the hospi-
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Table 3a. Parameter Estimates using the Simple Logistic Model and Multilevel Logistic Model fitted to IQI-16 (conges-

tive heart failure mortality rate).

Parameters Simple Logistic Regression Multilevel Logistic Regression
Estimate Std. Error p-value Estimate Std. Error p-value
Reference: Males; Aged 60-64
Intercept -4.127 0.155 <0.001 -4.430 0.207 <0.001
sex Females -0.255 0.257 0.321 -0.202 0.265 0.445
age 5 40-44 -0.755 0.726 0.298 -0.893 0.741 0.227
age 6 45-49 -0.283 0.439 0519 -0.187 0.448 0.676
age 7 50-54 -0.070 0.329 0.829 -0.177 0.343 0.604
age 8 55-59 0.125 0.246 0.610 0.106 0.256 0.676
age 9 60-64 0 - - 0 - -
agel0 65-69 0.037 0.202 0.852 0.057 0.209 0.784
agell 70-74 0.550 0.176 0.001 0.586 0.183 0.001
agel2 75-79 0.574 0.173 0.000 0.610 0.180 0.0007
agel3 80-84 1.019 0.170 <0.001 0.995 0.178 <0.001
agel4 85+ 1.483 0.167 <0.001 1.485 0.175 <0.001
agel9 40-44*Fem 0918 1.038 0.376 0.964 1.058 0.362
age20 45-49*Fem -0.220 0.859 0.797 -0.241 0.869 0.781
age21 50-54*Fem 0.550 0.503 0.274 0.758 0518 0.143
age22 55-59*Fem -0.559 0.496 0260 -0.380 0.506 0452
age23 60-64*Fem 0 - - 0 - -
age24 65-69*Fem 0.238 0.323 0.461 0.136 0.334 0.683
age25 70-74*Fem -0.149 0.290 0.607 -0.224 0.299 0.454
age26 75-79*Fem -0.007 0.281 0.979 -0.082 0.289 0.775
age27 80-84*Fem -0.082 0.275 0.765 -0.100 0.284 0.723
age28 85+ *Fem 0.251 0.269 0.350 0.137 0.277 0.620
Variance components Variance St. error p-value
O Hosp 0.787 0.245 0.001
O Hospspec 2.036 0.265 <0.001

tal Oy, = 0.787 (z=3.206; p=0.001) were both sta-
tistically significant. The Wald test statistics suggest
a significant difference between the LR and the ML
model (p-value < 0.001, first line Table 4) given the
variance-covariance matrix being obtained from the
LR model. Instead, if the Wald test is computed with
the variance-covariance matrix of the ML model,
there is o significant difference between the two ap-
proaches (p=0.986).

The estimated ICCs value obtained in the multilevel
model are 33.31%, which is related to a variability ex-
plained by the difference between the specialist ward
in the hospitals; and 12.88%, explained by the differ-
ence between the hospitals. Table 5 shows the average
and the standard deviation of the differences between
the hospital mortality rates (expected and adjusted)
calculated with the two models. The average differ-
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ence in the expected rates between the simple logistic
model and the multilevel model was -0.007, versus
0.012 as in the adjusted rates. These differences are
rather high compared to the average observed rate
(0.031), demonstrating that the choice of model could
have a significant effect on the estimates of hospital
mortality rates. The graph in Figure 1 shows the dif-
ferences, for each hospital, in adjusted rates as found
using the multilevel model as compared to those rates
found by using the LR model for two indicators
(IQI16 and IQI17). With both methods, the higher the
mortality rate in a hospital implies a greater difference
between calculated adjusted rates. Figure 2 shows the
relation between the observed (OBR) and expected
rates (EXR) with LR and ML, and the 95% CI of ob-
served values. In both models it seems that low OBRs
do not fit with the calculated EXRs.
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Table 3b. Parameter Estimates using the Simple Logistic Model and Multilevel Logistic Model fitted to IQI-17 (acute
stroke mortality rate).

Parameters Simple Logistic Regression Multilevel Logistic Regression
Estimate Std. Error p-value Estimate Std. Error p-value
Reference: Males; Age 60-64
Intercept -2.729 0.115 <0.001 -3.484 0.208 <0.001
sex Females -0.320 0.210 0.126 -0.293 0.259 0.258
age | 18-24 0.510 0.484 0.292 -0.466 0.668 0.485
age 2 25-29 1.055 0.459 0.021 0.235 0.726 0.745
age 3 30-34 0.244 0479 0.610 -0.050 0.672 0.940
age 4 35-39 0.261 0.349 0453 -0.792 0472 0.093
age 5 40-44 0.369 0.178 0.184 -0.001 0.366 0.997
age 6 45-49 0.389 0.226 0.084 0.021 0.295 0.940
age 7 50-54 -0.123 0.220 0.576 -0.495 0.279 0.076
age 8 55-59 0.147 0.175 0.400 -0.117 0.224 0.599
age 9 60-64 0 - - 0 - -
agel0 65-69 -0.088 0.152 0.561 0.096 0.188 0.607
agell 70-74 -0.044 0.141 0.752 0.267 0.175 0.127
agel2 75-79 0.225 0.134 0.094 0.680 0.166 <0.001
agel3 80-84 0.446 0.137 0.001 1.032 0.169 <0.001
agel4 85+ 0.791 0.136 <0.001 1522 0.167 <0.001
agel5 18-24*Fem -0.377 0.890 0.671 0.160 1.103 0.884
agel6 25-29*Fem 0.097 0.790 0.902 0.178 1.136 0.874
agel7 30-34*Fem 0.293 0.664 0658 -0.540 0.898 0.547
agel8 35-39*Fem 0464 0.524 0.375 1.056 0.695 0.128
agel9 40-44*Fem -0.005 0476 0.991 -0.242 0.608 0.689
age20 45-49*Fem -0.013 0413 0.973 -0.208 0.525 0.691
age21 50-54*Fem 0.940 0.339 0.005 0.741 0.439 0.091
age22 55-59*Fem 0.116 0.315 0.710 0.173 0.394 0.660
age23 60-64*Fem 0 - - 0 - -
age24 65-69*Fem 0.452 0.257 0.079 0.318 0318 0.318
age25 70-74*Fem 0472 0.241 0.050 0.571 0.294 0.052
age26 75-79%Fem 0.216 0.233 0.353 0.208 0.284 0.463
age27 80-84*Fem 0.358 0.231 0.121 0418 0.281 0.136
age28 85+ *Fem 0.141 0.229 0.537 0.063 0.278 0.818
Variance components Variance St. error p value
O Hosp 0.435 0312 0.082
O Hosprspes 3.358 0.428 <0.001

Table 4. Wald test statistics and p-value comparing models fitted to IQI-16 (congestive heart failure mortality rate) and
1QI-17 (acute stroke mortality rate).

1QI16 1QI117
Wald Pr > ChiSq Wald Pr > ChiSq
Chi-square Chi-square
Simple vs. Multilevel 185.991 <0.001 566.693 <0.001
Multilevel vs. Simple 8.043 0.986 148.840 <0.001
The Wald test uses the estimated covariance matrix from the first model indicated in the comparison.
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Table 5. Estimated differences (and standard deviation) in provider-level model predictions of expected and risk adjusted
rates for IQI-16 (congestive heart failure mortality rate) and IQI-17 (acute stroke mortality rate).

IQI16 IQI17
Mean SD Mean SD
Observed Rate 0.031 0.033 0.081 0.062
Difference from expected rate -0.007 0.001 -0.018 0.015
Difference from adjusted rate 0.012 0.014 0.032 0.022

Comparison between the AHRQ and the Apulian
scores for IQI16.

The reference values applied with the AHRQ score
vector are higher (4.36%) compared to those deter-
mined with the Puglia region score vector (3.15%).
The values for each hospital, when adjusted with the
vector of the PHD, are closer to the regional average
value and 76.7% of studied hospitals, if adjusted
with ML model, 80% of hospitals, if adjusted with
LR model, fall within the limits of the confidence in-
terval, as compared with only 35% of hospitals after
initial application of the AHRQ scores. The compar-
ison is biased because the AHRQ-adjusted rates are
obtained from a score vector with APR-DRG covari-

ates, which its studied population and Apulian score
vector do not include.

The IQI17 indicator

The ML model applied to the reference population
does not have a single convergence problem, so no
covariates need fo be excluded. The parameter values
and standard errors calculated with the two models
are comparable (Table 3b). The variance component
associated with the specific random effects of the
specialist wards in the multilevel model was G%ygprspec
=3.358 (z=7.84; p<0.001), which was higher than for
the 1QI16; meanwhile, the component associated
with the hospitals was Of,, = 0435 (z=1.394;

0,09 R
0,08 -
0,07 4
0,06 - .
0,05 4
0,04 -
0.03 -

0,02 3

0,01 ;’g’gx‘g‘
0 T T T

Difference hetw. Risk Adj. Rates

. * IQI17
% IQI16

0 0.05 0.1 0.15

0.2 0.25 03 035

Risk Adjusted Rate with Logistic Model

Figure 1. Relation between the adjusted rate of the simple logistic model and the difference between the adjusted rates of
the two models.
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Figure 2. Indicator IQI16. Observed mortality rate with CI 95% and expected mortality rate.

p=0.082), which was lower than for the IQI16, and
not statistically significant. The Wald test statistics
indicate significant differences between the parame-
ters estimated with the LR and with the ML model
(p<0.0001) when calculated using either the vari-
ance-covariance matrix obtained from the LR model
or from the ML model.

The estimate of the ICC value in the ML model was
47 41%-related to the difference between the special-
ities in the hospitals, and only 6.15%-related to the
difference among the hospitals.

The average difference in the expected rates between

the two models was -0.018, versus 0.032 for the ad-
justed rates (Table 5). These differences are rather
high compared to the average observed rate (0.081),
demonstrating once again that the choice of model
could have a significant effect on the estimates of
mortality rates. The graph in Figure 1 shows how the
different choices in modelling have a greater effect
on the higher mortality rates than on the lower ones.
Figure 3 shows the relation between the observed
(OBR) and expected rates (EXR) using the LR and
ML models with a 95% CI of the observed values. In
both models the OBRs do not fit with the EXRs for
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Figure 3. Indicator IQI17. Observed mortality rate with CI 95% and expected mortality rate.

either the low or high rates. The OBRs 95% ClIs are
wide, especially for the found high rates. This width
is probably due to the small number of events and
cases.

Comparison between the AHRQ and the Apulian
Scores for 1QI17

The reference values applied with the AHRQ score
vectors are higher (11.2%) compared to those deter-
mined with the Puglia region score vectors (7.89%).

252

The values for each hospital, adjusted with the PHD
vector, are closer to the regional average value and
83% of hospitals, if adjusted with ML model, 85% of
hospitals, if adjusted with LR model, fall within the
limits of the confidence interval as compared with
60% after application of the AHRQ scores. The com-
parison is biased because the AHRQ adjusted rates
are obtained from a score vector with APR-DRG co-
variates, which, as mentioned earlier, studies a popu-
lation which the Apulian score vector does not in-

clude.
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Discussion

The main aim of this study was to evaluate the effect
of a multilevel logistic model versus a simple logis-
tic model in application to the Risk Adjustment
Process. The validity of using multilevel models is
supported by recent research conducted by the Amer-
ican Heart Association, which suggests that a hierar-
chical regression model should be applied to data or-
ganised according to distinguishing and mutually-ex-
clusive characteristics, as in the case of hospital in-
formation grouped and differentiated by various, de-
scribed sorting criteria (8, 9). Categorizing individ-
ual patients within the first level unit, the hierarchi-
cal model treats the second level (speciality wards)
and third level (hospitals) units as a random sample
of elements in the respective populations, the vari-
ability of which is further subdivided into three parts:
attributable to the patients characteristics, attributa-
ble to the specialist unit and attributable to differ-
ences between the hospitals. The variability of these
latter two levels shows the real difference between
hospitals.

In our data set, the mortality indicator for congestive
heart failure was attributable to both speciality wards
and hospitals, whereas the mortality indicator for
stroke was conditioned only by the speciality wards.
This could be due to the fact that stroke patients are
usually treated in more specialised hospitals (with
departments of neurology, neurosurgery, intensive
care, etc.). Therefore, we concluded that there is less
variability between the general consideration of hos-
pitals and more variability to the actual healthcare
performance offered by the same specialist ward
(e.g., intensive care) in different hospitals. Conges-
tive ‘heart failure does not necessarily need to be
treated in a highly specialised hospital, so the vari-
ability in the mortality rates can be affected both by
the specific speciality of the discharge ward and by
the type of hospital. In the study by D’Errigo et al. on
the outcome following coronary artery by-pass grafts
in Italy, the proportion of variability attributable to
the hospital was 10.1% (10). In their work on acute
myocardial infarction Austin et al. found a percent-
age of variability equal to 12.6% (11). In the present
study, the variability attributable to the hospital was
similar in the case of congestive heart failure; how-

Logistic and multilevel models in the risk adjustment

ever, the discharging specialist ward contributed a
much higher variability.

In a ML model, it is very important to identify hier-
archical levels for interpreting the performance be-
tween macro- and micro-levels (12), so as to choose
the covariates correctly. In our study we assumed a
nested structure only for the patients and not for the
covariates (13).

Applying the Wald test, we found a significant differ-
ence between the LR and ML models both using the
variance-covariance matrix of the LR model and us-
ing the variance-covariance matrix of the ML model,
when studying the stroke mortality rate (IQI17). The
potential effect of a positive correlation between pa-
tients treated in the same hospital could cause signif-
icant differences between the vectors of the estimat-
ed parameters using the multilevel model or the lo-
gistic model. It should be remembered that the sim-
ple logistic model treats all the patients, on all levels
of hierarchy or grouping, as independent observa-
tions of some random process.

As to the IQI17 (mortality for acute stroke), in view
of the homogeneity of the results obtained with the
two Wald tests we could conclude that unlike the LR
model, the multilevel model is able to identify the
variability linked to hierarchical levels with the co-
variates used in the present study. However, with re-
gard to the congestive heart failure indicator (IQI16),
the Wald test produced contrasting results. Perhaps
the multilevel model requires a more correct defini-
tion of the covariates employed, or of the specific as-
signment of the levels on the intercept as well as on
the covariates, as previously stated in (14).

The use of a robust variance-covariance matrix in the
multilevel model did not modify the result of the
comparison between the models (data not shown)
(15, 16). The mortality rates of the hospitals are sig-
nificantly different when using the hierarchical mod-
el in the risk adjustment process as compared to the
simple logistic regression model. The use of covari-
ates relative to the severity of the illness or further hi-
erarchical levels could further highlight the greater
effectiveness of the ML model.

In this study we have also verified how vital it is in
risk adjustment process to choose a suitable refer-
ence population, confirming what was stated in the
report by Mattke et al. (17). AHRQ adjusted rates
could be determined even without employing severi-
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ty covariates, using the score vector yielded by the
AHRQ, but these scores are conditioned by other co-
variates included in its own estimation model. There-
fore, even if it were possible, adjustment could bias
the results and comparison among hospitals. Further-
more, the average regional mortality rates that result-
ed were higher than those rates obtained using scores
determined from the PHD reference population.

The importance of choosing the covariates to be in-
serted in the model, as according to the characteris-
tics of the reference population and the study popu-
lation, is highly evident. In their study, Huang et al.
(18) concluded that the selection of the risk adjust-
ment variables has more influence on the positioning
of the rates than on the statistics strategy applied. Re-
garding the congestive heart failure analysis, our
study confirms this opinion.

In conclusion, it is clear that when applying risk ad-
justment it is necessary to correctly define not only
the model to be used but also a homogeneous refer-
ence population. This allows one to obtain valid in-
dicators of outcome and to so promote a more accu-
rate organisational decision-making process.
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