
Introduction

When studying cerebral activity through neurophys-
iological techniques – such as electroencephalogra-
phy (EEG) and magnetoencephalography (MEG) –
the main goal is the discrimination of different
sources of electrical activity. The first step in this di-
rection is to separate the “cerebral” activity from
“other activity”, generated by non-cerebral sources,
the latter often being of such intensity that the former
is hidden. Typically, a MEG system measures the
mixture of original source signals and additive noise

(1): this mixture derives from both the “wanted”
sources and those that are “to be discharged” (called
artefacts). 
The Independent Component Analysis (ICA) tech-
nique can be useful for the elimination of artefacts and
noise from biomedical signals; the theory of the ICA
algorithm was described systematically for the first
time in (2), and has been widely applied to the analy-
sis of cerebral signals in the past decade, starting from
the first application to EEG signals by Makeig and
colleagues (3). The basic assumption of ICA is that a
set of statistically independent sources S has been
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Physiological activity in the brain can be evaluated by means of non-invasive electrophysiological techniques like elec-
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measures with optimal time resolution. The crucial problem is then to gain access to the inner neural code starting from
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in other physiological artefacts, not relevant to the desired observation.
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recorded signals. In particular, the “Independent Component Analysis” (ICA) model assumes that sources are statistically mu-
tually independent; to extract them from the mixture a measure of non-Gaussianity is maximised (i.e. kurtosis). 
In this paper, we discuss how the ICA assumptions fit with the complex and interconnected activity of cerebral networks
activity and we describe our newly proposed “Functional Source Separation” (FSS) algorithm, conceived as a generalisa-
tion of the basic ICA model. Some physiological constraints, according to the expected temporal behaviour of the cerebral
sources of interest, are added to the maximisation of kurtosis producing a multi-objective cost function that exploits glob-
al statistical features and functional source properties simultaneously. Some of the ICA and FSS applications from our pre-
vious studies are reviewed and discussed in order to provide application examples.
Our conclusions are that the ICA algorithm could be successfully applied for specific issues, such as artefact removal, but the
proposed multi-objective FSS cost function provides a more general framework for estimating cerebral activity of interest.  
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mixed linearly in the observed data X by means of an
unknown mixing matrix A. The aim is to recover both
S and A starting from the observation of the linear
mixture X=AS, without making any particular as-
sumption other than that of the statistical independ-
ence of the sources. ICA could be viewed as a devel-
opment of the classic statistical technique of “Princi-
pal Component Analysis” (PCA) (4): given a set of
multivariate measurements, the purpose of PCA is to
find a smaller set of variables with less redundancy,
that would give as good a representation as possible.
In PCA, the redundancy is measured by correlations
between data elements, while in ICA the much richer
concept of independence is used, and less emphasis is
placed on the reduction of the number of variables. In
the context of signal processing, both these methods
are comprised in the general family of the “Blind
Source Separation” (BSS) techniques. ICA has been
applied not only for removing artefacts from electro-
physiological signals, but also for estimating cerebral
activity involved in particular tasks (5). An important
debate has arisen among neuroscientists on the appro-
priateness of the ICA model in describing cerebral net-
work activity.   
The aim of the present paper is to discuss this point, by
means of an ad hoc review of some representative ICA
applications performed in our MEG laboratory both
on cerebral signals and foetal cardiac heartbeat detec-
tion. On the basis of the results that emerged from
those studies, we explain the reason we proposed a
new algorithm called “Functional Source Separation”
(FSS) (6-9). It adds a functional task-related reactivity
constraint to the cost function of the ICA model, i.e.
the ‘responsiveness’ to a specific task performed by
the subject during the experiment is maximised; the
functional constraint is based on a priori knowledge of
the cerebral reaction to the task under observation.
Two applications of this algorithm are described, in
which FSS was compared to ICA and PCA perform-
ances on the basis of the functional activation proper-
ties of the extracted sources and their estimated spatial
positions on the cortical surface. 

Applications of ICA to MEG data

Independent Component Analysis is a generative ‘la-
tent variables’ model that describes how the ob-

served data are generated by a process of mixing the
underlying unknown sources. The set of recorded
signals X is assumed to be obtained as a linear com-
bination (through an unknown mixing matrix A) of
statistically independent non-Gaussian sources S (at
most one Gaussian): X=AS. Sources S are estimated
(taking account of arbitrary scaling and permuta-
tions) by independent components Y as: Y=WX,
where the unmixing matrix W is estimated along
with the components. The basic estimation idea of
ICA is that, according to the central limit theorem,
sums of non-Gaussian independent random variables
are closer to a Gaussian than the original variables.
Therefore, if we take a linear combination y = Σ

i
wixi

of the observed mixture variables (which, because of
the linear mixing model, is a linear combination of
the independent components as well), this will be
maximally non-Gaussian if it equals one of the inde-
pendent components. Thus, the first ICA ‘estimation
principle’ can be stated as follows: “find the local
maxima of non-Gaussianity of a linear combination
y = Σ

i
wixi under the constraint that the variance of y

is constant. Each local maximum gives one inde-
pendent component”. Moreover, since independence
implies (non-linear) uncorrelatedness, the second
ICA ‘estimation principle’ could be formulated as:
“find the matrix W so that for any i ≠ j, the compo-
nents yi and yj are uncorrelated, and the transformed
components g(yi) and h(yj) are uncorrelated, where g
and h are suitable non-linear functions”. Therefore
the goal of ICA is to determine a transformation
which assures that the output signals are as inde-
pendent as possible. Technical details of the ICA al-
gorithms can be found in (10, 11). 

ICA for artefact identification and removal from
MEG signals
In the application to MEG data, X represents the ma-
trix of the recorded signals: a MEG system has a cer-
tain number m of sensors (m could vary from 20 to
500 sensors, depending on the system), positioned
over the subject’s head, and the magnetic fields gen-
erated by the subject’s brain activity are recorded for
a number T of time points. Therefore, the X matrix
has as many rows as the number of sensors (m, the
number of MEG channels) and as many columns as
the time samples (T, depending on the sampling fre-
quency: generally, this is 1000 Hz, so that one minute
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of recording=60000 sample points). When ICA is ap-
plied to the X matrix, the output of the algorithm is a
Y matrix m × T, where each row represents an esti-
mated independent component (IC) of the same di-
mension as the original channels (rows of X) and the
estimate of the separating W matrix of dimension 
m × m. It is therefore necessary to examine visually
the time courses of each IC, together with its weights
on the original sensors – the corresponding column of
W, the so-called IC ‘topography’ on the scalp – and
decide which is representing cerebral activity and
which could be discarded as “artefact” and noise. 
In our first application of ICA (12), we developed a
procedure to detect the ICs to be discharged as arte-
facts: in brief, the outputs of the ICA algorithm pass
through a detection system which takes the decision
to reject or to retain the given IC. Four markers are
considered for artefact recognition: percentage of
kurtosis-outlier segments, global kurtosis coefficient,
percentage of entropy-outlier segments (all based on
IC statistical properties), and correlation coefficient
with Power Spectrum Density (PSD) of typical arte-
facts (based on IC spectral characteristics). For each
IC, the detection system takes the reject decision
when at least one of these criteria is fulfilled. Then,
the retained ICs, denoted as ŷk (k ≤ m), pass through
the inverse system represented by the inverse W+ of

the estimated separation matrix thereby reconstruct-
ing data: xp

Rec = Wk
+ ŷk; the superscript p shows that

a part of the original signals could not be explained
by the selected ICs and Wk

+ denotes the correspon-
ding selected k columns of W+. We then define a
measure of “discrepancy” as the difference between
the original data and the retro-projected ones: 

(1)

To verify and possibly improve the performance of the
retro-projection process, we carry out a control cycle by
examining the spectral characteristics of the m-dimen-
sional discrepancy vector. At the end of this process we
obtain the final m-dimensional vector of the recon-
structed sensor signals .
As shown in Figure 1, panel (a), ICs corresponding
to typical artefacts such as ocular movements, car-
diac heartbeat and power line noise, are characterised
by high absolute kurtosis values (for Gaussian sig-
nals kurtosis is zero), respectively indicating super-
Gaussian (ocular/cardiac) and sub-Gaussian (power
line noise) behaviours. For this reason, the ICA algo-
rithm is particularly effective in detecting these types
of signal. In panel (b) of Figure 1, the data cleaning
procedure is illustrated: the original MEG channels,
contaminated by artefacts, are reconstructed by dis-
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Figure 1. Panel (a): time
courses of ICs estimating oc-
ular movements, heartbeat
and power line noise; corre-
sponding PSD, probability
density functions (pdf) – su-
perimposed dashed lines indi-
cate the Gaussian pdf – and
the topography of the ICs on
the scalp surface. Panel (b):
four examples of MEG sig-
nals contaminated by arte-
facts; on the left, time courses
of the original signals (bot-
tom) and of the same signals
reconstructed by removing
the IC corresponding to arte-
facts (up, xRec); on the right
their superimposed PSD: the
original signal (small dashed
lines), xRec (solid lines) and
the discrepancy (large dashed
lines).
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charging the ICs corresponding to artefacts. In this
way, the obtained ‘xRec’ (cleaned MEG signal) con-
tains only the cerebral frequencies of interest, and the
residual discrepancy captures artefacts and noise.

ICA applied to foetal magnetic recordings 
Foetal magnetocardiography (fMCG) (13, 14) is a
non-invasive technique used for the assessment of
foetal heart functions and well being in a variety of
clinical situations (15). fMCG recordings could be
viewed as mixtures of signals related to foetal car-
diac activity, maternal cardiac function and environ-
mental magnetic noise. The detection of foetal car-
diac signals from fMCG data is very difficult, since
the foetal heartbeat has a much smaller magnitude
than the maternal heartbeat at all gestational ages and
can be almost completely hidden by noise during
early gestation. In addition, the foetal and maternal
cardiac sources almost overlap in the time/frequency
domain. The rationale of applying ICA to fMCG da-
ta is that signals detected by the MEG sensors posi-
tioned over the mother’s abdomen are considered as

a linear mixture of stochastically independent contri-
butions coming (i) from the foetal heartbeat, which is
what we want to investigate, (ii) from unwanted bio-
logical near-field sources, as for example, the mater-
nal heartbeat, or gastric and uterine muscle contrac-
tions, motion artefacts, etc., and (iii) from the exter-
nal environment. 
Given these properties, we deemed it reasonable to
apply ICA for foetal heartbeat signal extraction (16).
fMCG data were recorded from 12 pregnant women
using a 25-sensor array placed over the mother’s ab-
domen. To have a reference for the maternal cardiac
signal, an electrocardiogram (ECG) of the mother
was simultaneously acquired. In all 12 recordings,
the ICA algorithm successfully extracted ICs that
could be clearly associated with cardiac sources. We
used spectral coherence (i.e. correlation in the fre-
quency domain) between ICs and recorded traces to
safely discriminate maternal from foetal compo-
nents. Although signals generated by the mothers’
hearts generally dominated the recorded traces, the
amplitudes showed fetus/mother ratios that varied
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Figure 2. Left: Maternal cardiac signal measured by the electrocardiogram (ECG); a selected fMCG channel with the ma-
ternal and foetal heart beats mixed (indicated respectively as M and F); IC corresponding to the maternal heartbeat; IC cor-
responding to the foetal heartbeat. Right: Corresponding probability density functions (pdf) of the signals with their kur-
tosis/skewness values (superimposed lines indicate the Gaussian pdf).



from case to case, most likely due to the different
foetal positions with respect to the sensors array. Fig-
ure 2 shows some of the results obtained: the ICA al-
gorithm successfully estimated the foetal heartbeat,
by exploiting the super-Gaussian characteristics of
this signal with respect to the original recorded mix-
ture, in spite of the smaller magnitude of the foetal
heartbeat with respect to the maternal one. 

The application of ICA to detect functionally differ-
ent intra-regional neuronal pools
In a subsequent study, we investigated wether ICA
was able to identify different cerebral sources and
wether it was possible to significantly differentiate
these estimated sources by exploiting directly their
task-related behaviour. Cerebral activity was record-
ed during a simple motor task, in five subjects, each
one repeated five times on different days. The sub-
jects were required to alternate a rest state (relax-
ation) to the simple hand opening-closing (move-
ment). Estimated ICs were flagged through a cluster-
ing procedure based on a functional task-related
measure. Intra-subject inter-session repeatability and
functional differences of obtained IC clusters were
tested to assess the statistical significance of the pro-
cedure (17). Kurtosis levels of the estimated ICs
were computed and compared between the function-
ally labelled IC sources and the ICs marked as arte-
facts. Since neuronal area involvement in the select-
ed task could be assessed from activity reduction be-
tween the movement and relaxation states, mostly in
the alpha (α:[7.5-12.5] Hz) and beta (β: [13-25] Hz)
frequency bands – a phenomenon called ‘event-relat-
ed desynchronisation’ – the following reactivity
measure was used:

(2)

where ŷj
k is the kth IC of the jth session of the subject,

and the PSD difference is computed between relax
and movement conditions in the α and β bands and
normalised to the corresponding PSD level in the re-
laxation state. Using this reactivity index, for each
subject we clustered the ICs corresponding to the ac-
tivated cerebral sources, defining as Mu the group of
ICs with the greatest reactivity index, and as Alpha
the ICs in the second cluster, in decreasing order of

reactivity. As depicted in Figure 3, across subjects
and sessions, kurtosis was significantly lower for Mu
and Alpha ICs with respect to ICs marked as Arte-
facts, and was not significantly different between Mu
and Alpha (Artefacts versus Mu, p=0.002, Artefacts
versus Alpha, p=0.007, Mu versus Alpha, p>0.6,
ANOVA test corrected for multiple comparisons).
As expected, the reactivity index was significantly
higher for Mu and Alpha sources with respect to
Artefacts, respectively p<0.0001 and p=0.03, and
was significantly higher for Mu versus Alpha
(p<0.0001). Kurtosis was inversely associated with
reactivity (Pearson’s r =-0.23, p=0.008): ICs corre-
sponding to the event-related desynchronisation phe-
nomena thus appeared therefore as the ‘residual’
ones in the ICA estimation procedure. 
Therefore, while the ICA non-Gaussianity assump-
tion was found to be in agreement with the character-
istics of the most common artefacts, like heartbeat
and ocular movements, as shown in panel (a) of Fig-
ure 1, and the required independence with respect to
the underlying brain activity could easily be justi-
fied, the same estimation principle seemed to dis-
agree somewhat with the characteristics of the cere-
bral sources of interest: the reactivity criterion used
to identify sources were found to be inversely asso-
ciated with the non-Gaussianity index of kurtosis.
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Figure 3. Scatter plot of the reactivity index versus kurto-
sis for the ICs corresponding to Alpha (ovals), Mu (cir-
cles), and for ICs marked as artefacts (crosses), across sub-
jects and sessions.
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These results suggested a possible way of improving
sources separation: by adding some event-related
functional constraints directly to the algorithm’s cost
function. 

Functional Source Separation applied to MEG
data

As in the ICA model, FSS starts from an additive,
hidden linear mixture of sources X=AS, where X
represents the observed data, S the underlying un-
known sources, and A the source-sensor coupling
matrix to be estimated. Additional information is
used to bias the decomposition algorithm towards
solutions that satisfy physiological assumptions, by
means of a multi-objective cost function: F = J +
λR, where J is the non-Gaussianity measure gener-
ally used in ICA (for example kurtosis), λ is a pa-
rameter to weigh the two parts of the contrast func-
tion, and R accounts for the prior information used
to extract sources. If λ is set to zero, maximisation
of F leads to the ICA model. The value of this tun-
ing parameter has to be selected according to the
data. FSS therefore exploits global statistical fea-
tures (J) and functional properties of the source of
interest (R) simultaneously. To separate contribu-
tions representing different sources, the proposed
procedure could be applied in two different ways:
by using an orthogonal extraction scheme, as in the
basic ICA model, denoted as “Functional Compo-
nent Analysis” (FCA); after having estimated the
first source, the second one is searched for in the or-
thogonal space with respect to the first, and so on
until the last component is estimated, with a stop
rule that can be defined according to the data. Alter-
natively, the orthogonalisation step could be
skipped, producing a non-orthogonal extraction
scheme. In this condition, the order of extraction is
not significant, because the algorithm is applied to
the original data each time; clearly, different con-
straints have to be applied each time to produce dif-
ferent sources. Optimisation is performed by simu-
lated annealing (18), so that the cost function can
have any form (e.g. it does not need to be differen-
tiable) and, if the algorithm is properly set, a glob-
al maximum is reached. Details on the optimisation
technique can be found in (6). 

FSS applied to evoked responses. In the first FSS
application (6), a very simple experiment was con-
sidered: in 15 subjects MEG cerebral activity was
recorded during separate little finger, thumb and me-
dian nerve galvanic stimulation. The aim was to ex-
tract sources corresponding to single finger cortical
representation during different activation states, by
using a proper functional constraint. Both the pro-
posed separation algorithm versions, FCA and FSS,
were compared to a standard ICA algorithm (10).
Performances were judged on the basis of spatial po-
sitions and functional activation properties of the ex-
tracted sources during the three different stimuli. To
identify neural networks devoted to individual finger
central representation, ‘reactivity’ to stimuli was tak-
en into account. It was defined as follows: the
evoked activity (EA) was computed separately for
the three sensorial stimulations by averaging signal
epochs centred on the corresponding stimulus (EAL,
little finger; EAT, thumb; EAM, median nerve). The
reactivity coefficient (Rstim) was then computed as the
difference in the average signal after the stimulus ar-
rival with respect to the baseline:

(3)

with stim = T, L, M and t = 0 corresponding to the
stimulus arrival. The time interval ranging from 20 to
40 ms includes the maximum activation (19), and the
baseline (no response) was computed in the pre-stim-
ulus time interval (-30 to -10 ms). In Figure 4, panel
(a), the evoked activity of the finger sources (little fin-
ger and thumb) extracted by the two proposed proce-
dures is depicted (FCA: FCL = FSL, FCT – since the lit-
tle finger source is the first extracted, it is the same in
the FCA and FSS procedure – FSS: FSL, FST) during
the stimulation of the thumb (EAT), little finger (EAL),
and median nerve (EAM) for one subject. The selective
reactivity of each finger source to the respective finger
stimulation is noteworthy; moreover, the FST reaction
to the median nerve stimulation was even higher than
to the stimulation of the thumb; this behaviour is con-
sidered more ‘physiological’ by neurologists and was
obtained from the non-orthogonal FSS extraction
scheme. ICA failed to separate the two finger sources
in more than half the cases – in those cases a ‘mixed’
source ICT;L was estimated, reacting both to little fin-
ger and thumb stimulation.
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FSS applied to induced responses. In another FSS
application (7), the aim was to explore the perform-
ance of the algorithm in reconstructing induced activ-
ity and, thus, the modulation of ongoing brain rhythms
due to external events. Although such induced activi-
ty changes are statistically robust phenomena, they are
not strictly time-locked to the stimulus/task onset, and
therefore do not result in a strong average evoked re-
sponse. We set out to investigate whether FSS was
able to describe the induced responses by reanalysing
an MEG dataset of a visual spatial frequency tuning
paradigm: subjects viewed a set of static square-wave
grating patterns for 4.5 sec (‘Task’) followed by 4.5
sec of a uniform field of the same mean luminance
(control condition or passive period, referred to as
‘Rest’). The spatial frequency of the gratings was ran-
domly alternated at 0.5, 3 or 6 cycles per degree (cpd)
(20). FSS results were compared to PCA and ICA out-
puts. Principal Components (PCs) and ICs were com-
puted in two ways: from the original MEG data matrix
(cases indicated as ‘PCA’ and ‘ICA’) and from the
MEG data filtered in the γ (gamma, 20-70 Hz) fre-
quency band (cases indicated as ‘PCA filt’ and ‘ICA
filt’), in order to facilitate signal recovery. To design
the task-related constraint for the FSS application, we
made use of the well-documented functional aspect of
a robust and temporally sustained stimulus-induced
power increase of gamma activity in the visual cortex

(21). Accordingly, the following ad hoc functional
constraint R was defined:

(4)

by computing the PSD area difference of the source
(FS) between Task and Rest in the gamma (γ: 20-70
Hz) frequency band and standardising this difference
with respect to the gamma activity level at Rest. In fig-
ure 4, panel (b) up, the mean percentage of source maps
in the area of interest (visual cortex) across subjects for
each method is depicted; in panel (b) bottom, bars rep-
resenting mean spatial frequency-related gamma reac-
tivity indices of the selected sources across subjects for
each method are shown. The superior performance of
FSS over ICA and PCA in estimating the induced gam-
ma activity in the visual cortex is clearly evident.

ICA versus FSS: non-Gaussianity and functional 
reactivity 
As the proposed FSS procedure includes physiologi-
cal constraints in the cost function, it is interesting to
evaluate the trade-off between non-Gaussianity max-
imisation and the introduced multi-objective optimi-
sation. For this purpose, kurtosis values of the FCA,
FSS sources and the corresponding ICA components
across subjects were compared. 
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Figure 4. Panel (a) (evoked re-
sponses): Evoked activity of
the estimated finger sources
(little finger and thumb) by the
two proposed procedures
(FCA: FCL = FSL, FCT; FSS:
FSL, FST) during the stimula-
tion of thumb (EAT), little fin-
ger (EAL), and median nerve
(EAM) in one subject. Panel (b)
(induced responses), top: Error
bars of the percentage (%) of
source maps in the area of in-
terest across subjects for each
method. Bottom: Bars repre-
senting the mean (2*standard
error) of the spatial frequency-
related gamma reactivity in-
dex of the selected sources
across subjects for each
method.



Evoked responses. When comparing the kurtosis val-
ues of FCA and FSS finger sources and the ICA ones,
we found that kurtosis was significantly higher for
ICA than FCA and FSS, as expected, and that these
last two were not significantly different (FCA versus
ICA: p=0.03; FSS versus ICA: p=0.01; FCA versus
FSS: p=0.8; ANOVA corrected for multiple compar-
isons). This result was not surprising, due to the intro-
duction of the functional constraint in FCA and FSS in
addition to the kurtosis maximisation. An interesting
finding was obtained when comparing kurtosis values
between finger sources and ‘residual components’ for
FCA versus ICA. For FCA ‘residual components’ are
defined as all the components extracted orthogonally
to the first two, without activating the functional con-
straints (λ=0), and for ICA they are defined as the re-
maining ICs, once the components corresponding to
finger activation have been selected having excluded,
from both methods, artefact components showing ex-
treme kurtosis values. In both cases, kurtosis was sig-
nificantly higher for the finger evoked-response
sources than for the residual components (FCA:
p=0.01; ICA: p<0.0001), indicating that, in this case,
non-zero kurtosis values are associated with function-
al source properties (kurtosis values between 3 and 4).
We could not perform this check between sources and
noise for the FSS procedure, since, without imposing
the functional constraints and without the orthogonal-
ity condition, no further source extraction was feasible
after the first two. 
Induced responses. A significant inverse relation-
ship between the kurtosis of the components and
‘good’ spatial map characteristics was present
(Spearman rho=-0.13, p=0.002), in the sense that low
kurtosis values were associated with the estimated
sources in the visual area. Moreover, no significant
differences in kurtosis between the selected compo-
nents across methods was found; kurtosis values of
the retained components were about those of a
Gaussian signal, with the median value equal to 0.3
(0 for the Gaussian) and the inter-quartile kurtosis
range [0.13-0.5].

Conclusions

Nearly eleven years after the usefulness of ICA for
EEG/MEG analysis was first discovered (3), it is in-

creasingly accepted by many researchers that ICA is
an effective method for removing stereotyped data
artefacts including eye blinks and lateral eye move-
ments, muscle activities, electrode or line noise, and
cardiac artefacts; in the present paper further demon-
stration of this property is provided, with ad hoc
evaluations of the statistical characteristics of the
artefact signals. Moreover, analysis of kurtosis val-
ues of the foetal MEG data showed that the ICA
model could also be successfully applied for a clear
separation of the baby’s from the mother’s heartbeat. 
Instead when an MEG study of desynchronisation in
brain phenomena was analysed, the ICA model re-
vealed an evident discrepancy with the characteris-
tics of the functionally reacting sources;  this finding
prompted a new approach to the cerebral source sep-
aration problem, that we described in the second part
of this paper. The novel Functional Source Separa-
tion method (FSS) was conceived as a generalisation
of the basic ICA model: some physiological con-
straints, defined from expected temporal behaviour
of the cerebral sources of interest, are added to the
maximisation of kurtosis, producing a multi-objec-
tive cost function that exploits global statistical fea-
tures and functional properties of the source of inter-
est simultaneously. The relative influence of these
two aspects could be adjusted on the specific dataset.
Moreover, the orthogonality constraint could be re-
moved, allowing the correlated source activity to be
estimated. Results obtained in FSS applications, to-
gether with the previous ICA studies, provided mate-
rial for a meta-analysis of the statistical and function-
al characteristics of the estimated sources across dif-
ferent experimental set-ups. 
We conclude that for some types of source the rele-
vant information could be effectively synthesised
with a single index, computed on the (approximate)
signal probability distribution, as in the case of arte-
facts. For evoked sources it is instead appropriate to
add a functional constraint to obtain an efficient sep-
aration, even if the evoked signal still shows non-
Gaussian characteristics. In other cases, as for in-
duced responses, the key features of the sources lie in
the contrast between two or more alternating states
(the Rest state versus the Task condition). The main
role in estimating these types of source is therefore
played by the optimisation of a functional constraint
index related to the experiment under study, and is
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not visible in the global signal probability distribu-
tion (insensitive to the time ordering of the data
points). 
A challenging issue for the proposed approach is
when completely new cerebral phenomena are stud-
ied, and a priori information is not available. Or, in
the case of modelling spontaneous brain activity,
where the different alternating states are not induced
by an external stimulation, and are therefore un-
known. In this direction, integrated studies of intra-
and extra-cerebral recordings could perhaps help in
estimating a mixture of statistical models of neuronal
activity at rest. 
Neuroscience has only recently been able to measure
cerebral dynamic processes, non invasively, through
a variety of imaging technologies, in space and in
time. Given the availability of this mass of informa-
tion, the need for suitable statistical analysis tools is
dramatically increased. As the present work set out to
show, biostatisticians and neuroscientists find them-
selves presented with an important and intriguing
challenge: by working together to optimise analytical
strategies and interpretation of data, they could ad-
vance our scientific knowledge of the living brain. 
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